Institut National de la Recherche Scientifique, Centre INRS Eau Terre et Environnement, 490, rue de la Couronne, Québec, Québec G1K 9A9, Canada; Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec G1V 0A6, Canada.
Aquat Toxicol. 2013 Oct 15;142-143:355-64. doi: 10.1016/j.aquatox.2013.09.009. Epub 2013 Sep 13.
The molecular mechanisms underlying nickel (Ni) and cadmium (Cd) toxicity and their specific effects on fish are poorly understood. Documenting gene transcription profiles offers a powerful approach toward identifying the molecular mechanisms affected by these metals and to discover biomarkers of their toxicity. However, confounding environmental factors can complicate the interpretation of the results and the detection of biomarkers for fish captured in their natural environment. In the present study, a 1000 candidate-gene microarray, developed from a previous RNA-seq study on a subset of individual fish from contrasting level of metal contamination, was used to investigate the transcriptional response to metal (Ni and Cd) and non metal (temperature, oxygen, and diet) stressors in yellow perch (Perca flavescens). Specifically, we aimed at (1) identifying transcriptional signatures specific to Ni and Cd exposure, (2) investigating the mechanisms of their toxicity, and (3) developing a predictive tool to identify the sublethal effects of Ni and Cd contaminants in fish sampled from natural environments. A total of 475 genes displayed significantly different transcription levels when temperature varied while 287 and 176 genes were differentially transcribed at different concentrations of Ni and Cd, respectively. These metals were found to mainly affect the transcription level of genes involved in iron metabolism, transcriptional and translational processes, vitamin metabolism, blood coagulation, and calcium transport. In addition, a linear discriminant analysis (LDA) made using gene transcription levels yielded 94% correctly reassigned samples regarding their level of metal contamination, which indicates the potential of the microarray to detect perch response to Cd or Ni effects.
镍(Ni)和镉(Cd)毒性的分子机制及其对鱼类的特定影响知之甚少。记录基因转录谱提供了一种强大的方法,可以识别受这些金属影响的分子机制,并发现其毒性的生物标志物。然而,混杂的环境因素会使结果的解释和鱼类在其自然环境中捕获的生物标志物的检测变得复杂。在本研究中,使用先前在来自不同金属污染水平的个体鱼类的一部分的 RNA-seq 研究中开发的 1000 个候选基因微阵列,来研究金属(Ni 和 Cd)和非金属(温度、氧气和饮食)胁迫对黄鲈(Perca flavescens)的转录反应。具体而言,我们旨在(1)鉴定特定于 Ni 和 Cd 暴露的转录特征,(2)研究其毒性机制,以及(3)开发一种预测工具,以识别从自然环境中采样的鱼类中 Ni 和 Cd 污染物的亚致死效应。当温度变化时,共有 475 个基因的转录水平显示出明显不同,而在不同浓度的 Ni 和 Cd 下,分别有 287 和 176 个基因的转录水平不同。这些金属主要影响涉及铁代谢、转录和翻译过程、维生素代谢、血液凝固和钙转运的基因的转录水平。此外,使用基因转录水平进行的线性判别分析(LDA)表明,94%的样本根据其金属污染水平被正确重新分配,这表明微阵列有可能检测到鲈鱼对 Cd 或 Ni 效应的反应。