Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, United States of America.
PLoS One. 2013 Sep 23;8(9):e74456. doi: 10.1371/journal.pone.0074456. eCollection 2013.
The vast majority of nanotoxicity studies measures the effect of exposure to a toxicant on an organism and ignores the potentially important effects of the organism on the toxicant. We investigated the effect of citrate-coated silver nanoparticles (AgNPs) on populations of the freshwater alga Chlamydomonas reinhardtii at different phases of batch culture growth and show that the AgNPs are most toxic to cultures in the early phases of growth. We offer strong evidence that reduced toxicity occurs because extracellular dissolved organic carbon (DOC) compounds produced by the algal cells themselves mitigate the toxicity of AgNPs. We analyzed this feedback with a dynamic model incorporating algal growth, nanoparticle dissolution, bioaccumulation of silver, DOC production and DOC-mediated inactivation of nanoparticles and ionic silver. Our findings demonstrate how the feedback between aquatic organisms and their environment may impact the toxicity and ecological effects of engineered nanoparticles.
绝大多数纳米毒性研究都测量了暴露于有毒物质对生物体的影响,而忽略了生物体对有毒物质可能产生的重要影响。我们研究了柠檬酸银纳米颗粒(AgNPs)对在分批培养生长不同阶段的淡水藻类衣藻(Chlamydomonas reinhardtii)种群的影响,结果表明 AgNPs 对生长早期阶段的培养物毒性最大。我们提供了有力的证据表明,毒性降低是因为藻类细胞自身产生的细胞外溶解有机碳(DOC)化合物减轻了 AgNPs 的毒性。我们用一个动态模型对此进行了分析,该模型纳入了藻类生长、纳米颗粒溶解、银的生物累积、DOC 产生以及 DOC 介导的纳米颗粒和离子银失活。我们的研究结果表明,水生生物与其环境之间的这种反馈如何可能影响工程纳米颗粒的毒性和生态影响。