Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA.
J Chem Phys. 2013 Sep 28;139(12):124503. doi: 10.1063/1.4821637.
Bulk metallic glasses (BMGs) are produced by rapidly thermally quenching supercooled liquid metal alloys below the glass transition temperature at rates much faster than the critical cooling rate R(c) below which crystallization occurs. The glass-forming ability of BMGs increases with decreasing R(c), and thus good glass-formers possess small values of R(c). We perform molecular dynamics simulations of binary Lennard-Jones (LJ) mixtures to quantify how key parameters, such as the stoichiometry, particle size difference, attraction strength, and heat of mixing, influence the glass-formability of model BMGs. For binary LJ mixtures, we find that the best glass-forming mixtures possess atomic size ratios (small to large) less than 0.92 and stoichiometries near 50:50 by number. In addition, weaker attractive interactions between the smaller atoms facilitate glass formation, whereas negative heats of mixing (in the experimentally relevant regime) do not change R(c) significantly. These results are tempered by the fact that the slowest cooling rates achieved in our simulations correspond to ~10(11) K/s, which is several orders of magnitude higher than R(c) for typical BMGs. Despite this, our studies represent a first step in the development of computational methods for quantitatively predicting glass-formability.
块状金属玻璃(BMGs)是通过将过冷液态金属合金以比发生结晶的临界冷却速率 R(c) 快得多的速率快速热淬火至玻璃转变温度以下而生产的。BMGs 的玻璃形成能力随 R(c) 的降低而增加,因此良好的玻璃形成体具有较小的 R(c) 值。我们对二元 Lennard-Jones (LJ) 混合物进行分子动力学模拟,以量化关键参数(如化学计量比、颗粒尺寸差异、吸引力强度和混合热)如何影响模型 BMG 的可成形性。对于二元 LJ 混合物,我们发现最佳的玻璃形成混合物具有原子尺寸比(小到大)小于 0.92 和接近 50:50 的化学计量比。此外,较小原子之间较弱的吸引力相互作用有利于玻璃形成,而混合热为负(在实验相关的范围内)不会显著改变 R(c)。然而,我们的研究结果受到以下事实的限制,即在我们的模拟中实现的最慢冷却速率对应于约 10(11) K/s,这比典型 BMG 的 R(c) 高几个数量级。尽管如此,我们的研究代表了开发用于定量预测可成形性的计算方法的第一步。