Zhang Kai, Fan Meng, Liu Yanhui, Schroers Jan, Shattuck Mark D, O'Hern Corey S
Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA.
J Chem Phys. 2015 Nov 14;143(18):184502. doi: 10.1063/1.4935002.
When a liquid is cooled well below its melting temperature at a rate that exceeds the critical cooling rate Rc, the crystalline state is bypassed and a metastable, amorphous glassy state forms instead. Rc (or the corresponding critical casting thickness dc) characterizes the glass-forming ability (GFA) of each material. While silica is an excellent glass-former with small Rc < 10(-2) K/s, pure metals and most alloys are typically poor glass-formers with large Rc > 10(10) K/s. Only in the past thirty years have bulk metallic glasses (BMGs) been identified with Rc approaching that for silica. Recent simulations have shown that simple, hard-sphere models are able to identify the atomic size ratio and number fraction regime where BMGs exist with critical cooling rates more than 13 orders of magnitude smaller than those for pure metals. However, there are a number of other features of interatomic potentials beyond hard-core interactions. How do these other features affect the glass-forming ability of BMGs? In this manuscript, we perform molecular dynamics simulations to determine how variations in the softness and non-additivity of the repulsive core and form of the interatomic pair potential at intermediate distances affect the GFA of binary alloys. These variations in the interatomic pair potential allow us to introduce geometric frustration and change the crystal phases that compete with glass formation. We also investigate the effect of tuning the strength of the many-body interactions from zero to the full embedded atom model on the GFA for pure metals. We then employ the full embedded atom model for binary BMGs and show that hard-core interactions play the dominant role in setting the GFA of alloys, while other features of the interatomic potential only change the GFA by one to two orders of magnitude. Despite their perturbative effect, understanding the detailed form of the intermetallic potential is important for designing BMGs with cm or greater casting thickness.
当一种液体以超过临界冷却速率Rc的速度被冷却至远低于其熔点温度时,晶态被越过,取而代之的是形成一种亚稳态的非晶玻璃态。Rc(或相应的临界铸造厚度dc)表征了每种材料的玻璃形成能力(GFA)。虽然二氧化硅是一种出色的玻璃形成体,其临界冷却速率Rc < 10^(-2) K/s 很小,但纯金属和大多数合金通常是较差的玻璃形成体,其临界冷却速率Rc > 10^(10) K/s 很大。直到过去三十年,才发现块状金属玻璃(BMG)的临界冷却速率Rc接近二氧化硅的临界冷却速率。最近的模拟表明,简单的硬球模型能够确定原子尺寸比和数量分数范围,在该范围内存在临界冷却速率比纯金属小超过13个数量级的块状金属玻璃。然而,除了硬核相互作用之外,原子间势还有许多其他特征。这些其他特征如何影响块状金属玻璃的玻璃形成能力呢?在本论文中,我们进行分子动力学模拟,以确定中间距离处排斥核的柔软性和非加和性以及原子对势形式的变化如何影响二元合金的玻璃形成能力。原子对势的这些变化使我们能够引入几何失配并改变与玻璃形成竞争的晶相。我们还研究了将多体相互作用强度从零调整到完全嵌入原子模型对纯金属玻璃形成能力的影响。然后,我们将完全嵌入原子模型应用于二元块状金属玻璃,并表明硬核相互作用在设定合金的玻璃形成能力方面起主导作用,而原子间势的其他特征仅使玻璃形成能力改变一到两个数量级。尽管它们具有微扰作用,但了解金属间势的详细形式对于设计具有厘米或更大铸造厚度的块状金属玻璃很重要。