Zhang Kai, Liu Yanhui, Schroers Jan, Shattuck Mark D, O'Hern Corey S
Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA.
Department of Physics and Benjamin Levich Institute, The City College of the City University of New York, New York, New York 10031, USA.
J Chem Phys. 2015 Mar 14;142(10):104504. doi: 10.1063/1.4914370.
Bulk metallic glasses (BMGs) are amorphous alloys with desirable mechanical properties and processing capabilities. To date, the design of new BMGs has largely employed empirical rules and trial-and-error experimental approaches. Ab initio computational methods are currently prohibitively slow to be practically used in searching the vast space of possible atomic combinations for bulk glass formers. Here, we perform molecular dynamics simulations of a coarse-grained, anisotropic potential, which mimics interatomic covalent bonding, to measure the critical cooling rates for metal-metalloid alloys as a function of the atomic size ratio σS/σL and number fraction xS of the metalloid species. We show that the regime in the space of σS/σL and xS where well-mixed, optimal glass formers occur for patchy and LJ particle mixtures, coincides with that for experimentally observed metal-metalloid glass formers. Thus, our simple computational model provides the capability to perform combinatorial searches to identify novel glass-forming alloys.
大块金属玻璃(BMGs)是具有理想机械性能和加工能力的非晶态合金。迄今为止,新型BMGs的设计在很大程度上采用了经验法则和反复试验的实验方法。从头算计算方法目前速度过慢,无法实际用于在大量可能的原子组合空间中搜索大块玻璃形成体。在此,我们对一种模拟原子间共价键的粗粒度各向异性势进行分子动力学模拟,以测量金属 - 类金属合金的临界冷却速率,作为类金属物种的原子尺寸比σS/σL和数量分数xS的函数。我们表明,对于补丁状和LJ粒子混合物,出现充分混合的最佳玻璃形成体的σS/σL和xS空间区域,与实验观察到的金属 - 类金属玻璃形成体的区域一致。因此,我们的简单计算模型提供了进行组合搜索以识别新型玻璃形成合金的能力。