Department of Bioengineering, Rice University, 6100 Main Street, Houston, Texas 77005 and Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030.
Med Phys. 2013 Oct;40(10):103302. doi: 10.1118/1.4819815.
A k-means-based classification algorithm is investigated to assess suitability for rapidly separating and classifying fat/water spectral peaks from a fast chemical shift imaging technique for magnetic resonance temperature imaging. Algorithm testing is performed in simulated mathematical phantoms and agar gel phantoms containing mixed fat/water regions.
Proton resonance frequencies (PRFs), apparent spin-spin relaxation (T2*) times, and T1-weighted (T1-W) amplitude values were calculated for each voxel using a single-peak autoregressive moving average (ARMA) signal model. These parameters were then used as criteria for k-means sorting, with the results used to determine PRF ranges of each chemical species cluster for further classification. To detect the presence of secondary chemical species, spectral parameters were recalculated when needed using a two-peak ARMA signal model during the subsequent classification steps. Mathematical phantom simulations involved the modulation of signal-to-noise ratios (SNR), maximum PRF shift (MPS) values, analysis window sizes, and frequency expansion factor sizes in order to characterize the algorithm performance across a variety of conditions. In agar, images were collected on a 1.5T clinical MR scanner using acquisition parameters close to simulation, and algorithm performance was assessed by comparing classification results to manually segmented maps of the fat/water regions.
Performance was characterized quantitatively using the Dice Similarity Coefficient (DSC), sensitivity, and specificity. The simulated mathematical phantom experiments demonstrated good fat/water separation depending on conditions, specifically high SNR, moderate MPS value, small analysis window size, and low but nonzero frequency expansion factor size. Physical phantom results demonstrated good identification for both water (0.997 ± 0.001, 0.999 ± 0.001, and 0.986 ± 0.001 for DSC, sensitivity, and specificity, respectively) and fat (0.763 ± 0.006, 0.980 ± 0.004, and 0.941 ± 0.002 for DSC, sensitivity, and specificity, respectively). Temperature uncertainties, based on PRF uncertainties from a 5 × 5-voxel ROI, were 0.342 and 0.351°C for pure and mixed fat/water regions, respectively. Algorithm speed was tested using 25 × 25-voxel and whole image ROIs containing both fat and water, resulting in average processing times per acquisition of 2.00 ± 0.07 s and 146 ± 1 s, respectively, using uncompiled MATLAB scripts running on a shared CPU server with eight Intel Xeon(TM) E5640 quad-core processors (2.66 GHz, 12 MB cache) and 12 GB RAM.
Results from both the mathematical and physical phantom suggest the k-means-based classification algorithm could be useful for rapid, dynamic imaging in an ROI for thermal interventions. Successful separation of fat/water information would aid in reducing errors from the nontemperature sensitive fat PRF, as well as potentially facilitate using fat as an internal reference for PRF shift thermometry when appropriate. Additionally, the T1-W or R2* signals may be used for monitoring temperature in surrounding adipose tissue.
研究了一种基于 K-均值的分类算法,以评估其在快速化学位移成像技术中从磁共振温度成像的脂肪/水光谱峰中快速分离和分类的适用性。在模拟数学体模和含有混合脂肪/水区域的琼脂凝胶体模中进行算法测试。
使用单峰自回归移动平均 (ARMA) 信号模型计算每个体素的质子共振频率 (PRF)、表观自旋-自旋弛豫 (T2*) 时间和 T1 加权 (T1-W) 幅度值。然后,这些参数用作 K-均值排序的标准,结果用于确定每个化学物质簇的 PRF 范围,以便进一步分类。为了检测次要化学物质的存在,在随后的分类步骤中需要时使用双峰 ARMA 信号模型重新计算光谱参数。数学体模模拟涉及调制信噪比 (SNR)、最大 PRF 偏移 (MPS) 值、分析窗口大小和频率扩展因子大小,以便在各种条件下表征算法性能。在琼脂中,使用接近模拟的采集参数在 1.5T 临床磁共振扫描仪上采集图像,并通过将分类结果与脂肪/水区域的手动分割图进行比较来评估算法性能。
使用 Dice 相似系数 (DSC)、灵敏度和特异性进行定量评估。模拟数学体模实验表明,脂肪/水分离取决于条件,特别是高 SNR、适度的 MPS 值、小的分析窗口大小和低但非零的频率扩展因子大小。物理体模结果表明,水(DSC、灵敏度和特异性分别为 0.997±0.001、0.999±0.001 和 0.986±0.001)和脂肪(DSC、灵敏度和特异性分别为 0.763±0.006、0.980±0.004 和 0.941±0.002)均具有良好的识别能力。基于 5×5 体素 ROI 中 PRF 不确定性的温度不确定性分别为纯脂肪/水区域和混合脂肪/水区域的 0.342°C 和 0.351°C。使用包含脂肪和水的 25×25 体素和全图像 ROI 测试算法速度,使用未编译的 MATLAB 脚本在共享 CPU 服务器上运行,该服务器具有八个 Intel Xeon(TM) E5640 四核处理器(2.66GHz,12MB 缓存)和 12GB RAM,平均每次采集的处理时间分别为 2.00±0.07s 和 146±1s。
数学和物理体模的结果表明,基于 K-均值的分类算法可用于 ROI 中的快速、动态成像。成功分离脂肪/水信息将有助于减少非温度敏感脂肪 PRF 的误差,并在适当情况下有可能促进使用脂肪作为 PRF 位移测温的内部参考。此外,T1-W 或 R2* 信号可用于监测周围脂肪组织的温度。