Department of Mathematics, Clarkson University, Potsdam, New York 13669, USA.
Chaos. 2013 Sep;23(3):033101. doi: 10.1063/1.4812722.
Given multiple images that describe chaotic reaction-diffusion dynamics, parameters of a partial differential equation (PDE) model are estimated using autosynchronization, where parameters are controlled by synchronization of the model to the observed data. A two-component system of predator-prey reaction-diffusion PDEs is used with spatially dependent parameters to benchmark the methods described. Applications to modeling the ecological habitat of marine plankton blooms by nonlinear data assimilation through remote sensing are discussed.
给定多个描述混沌反应扩散动力学的图像,使用自同步估计偏微分方程 (PDE) 模型的参数,其中参数通过模型与观测数据的同步进行控制。使用具有空间相关参数的捕食者-猎物反应扩散 PDE 两分量系统来基准描述的方法。通过遥感进行的非线性数据同化来模拟海洋浮游植物爆发的生态生境的应用也进行了讨论。