Suppr超能文献

非齐次加权 Koch 网络上的随机游走。

Random walks on non-homogenous weighted Koch networks.

机构信息

Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, 212013, People's Republic of China.

出版信息

Chaos. 2013 Sep;23(3):033106. doi: 10.1063/1.4810927.

Abstract

In this paper, we introduce new models of non-homogenous weighted Koch networks on real traffic systems depending on the three scaling factors r1,r2,r3∈(0,1). Inspired by the definition of the average weighted shortest path (AWSP), we define the average weighted receiving time (AWRT). Assuming that the walker, at each step, starting from its current node, moves uniformly to any of its neighbors, we show that in large network, the AWRT grows as power-law function of the network order with the exponent, represented by θ(r1,r2,r3)=log4(1+r1+r2+r3). Moreover, the AWSP, in the infinite network order limit, only depends on the sum of scaling factors r1,r2,r3.

摘要

在本文中,我们根据三个标度因子 r1,r2,r3∈(0,1),引入了实交通系统中非均匀加权 Koch 网络的新模型。受平均加权最短路径 (AWSP) 的定义启发,我们定义了平均加权接收时间 (AWRT)。假设步行者在每一步中,从当前节点开始,均匀地移动到其任意一个邻居,我们表明,在大型网络中,AWRT 随着网络阶的幂律增长,指数由 θ(r1,r2,r3)=log4(1+r1+r2+r3)表示。此外,在无限网络阶极限下,AWSP 仅取决于标度因子 r1,r2,r3 的和。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验