Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
Chaos. 2013 Sep;23(3):033106. doi: 10.1063/1.4810927.
In this paper, we introduce new models of non-homogenous weighted Koch networks on real traffic systems depending on the three scaling factors r1,r2,r3∈(0,1). Inspired by the definition of the average weighted shortest path (AWSP), we define the average weighted receiving time (AWRT). Assuming that the walker, at each step, starting from its current node, moves uniformly to any of its neighbors, we show that in large network, the AWRT grows as power-law function of the network order with the exponent, represented by θ(r1,r2,r3)=log4(1+r1+r2+r3). Moreover, the AWSP, in the infinite network order limit, only depends on the sum of scaling factors r1,r2,r3.
在本文中,我们根据三个标度因子 r1,r2,r3∈(0,1),引入了实交通系统中非均匀加权 Koch 网络的新模型。受平均加权最短路径 (AWSP) 的定义启发,我们定义了平均加权接收时间 (AWRT)。假设步行者在每一步中,从当前节点开始,均匀地移动到其任意一个邻居,我们表明,在大型网络中,AWRT 随着网络阶的幂律增长,指数由 θ(r1,r2,r3)=log4(1+r1+r2+r3)表示。此外,在无限网络阶极限下,AWSP 仅取决于标度因子 r1,r2,r3 的和。