Suppr超能文献

两种带有陷阱的权重相关行走方式在加权无标度树状网络中。

Two types of weight-dependent walks with a trap in weighted scale-free treelike networks.

机构信息

Institute of Applied System Analysis, Faculty of Science, Jiangsu University, Zhenjiang, 212013, P. R. China.

Department of Mathematics, Nanjing University, Nanjing, 210093, P. R. China.

出版信息

Sci Rep. 2018 Jan 24;8(1):1544. doi: 10.1038/s41598-018-19959-x.

Abstract

In this paper, we present the weighted scale-free treelike networks controlled by the weight factor r and the parameter m. Based on the network structure, we study two types of weight-dependent walks with a highest-degree trap. One is standard weight-dependent walk, while the other is mixed weight-dependent walk including both nearest-neighbor and next-nearest-neighbor jumps. Although some properties have been revealed in weighted networks, studies on mixed weight-dependent walks are still less and remain a challenge. For the weighted scale-free treelike network, we derive exact solutions of the average trapping time (ATT) measuring the efficiency of the trapping process. The obtained results show that ATT is related to weight factor r, parameter m and spectral dimension of the weighted network. We find that in different range of the weight factor r, the leading term of ATT grows differently, i.e., superlinearly, linearly and sublinearly with the network size. Furthermore, the obtained results show that changing the walking rule has no effect on the leading scaling of the trapping efficiency. All results in this paper can help us get deeper understanding about the effect of link weight, network structure and the walking rule on the properties and functions of complex networks.

摘要

在本文中,我们提出了由权重因子 r 和参数 m 控制的加权无尺度树状网络。基于网络结构,我们研究了两种具有最高度陷阱的依赖权重的行走方式。一种是标准的依赖权重的行走,另一种是包含最近邻和次近邻跳跃的混合依赖权重的行走。尽管在加权网络中已经揭示了一些性质,但对混合依赖权重的行走的研究仍然较少,并且仍然是一个挑战。对于加权无尺度树状网络,我们推导出了平均捕获时间(ATT)的精确解,该解用于衡量捕获过程的效率。得到的结果表明,ATT 与权重因子 r、参数 m 和加权网络的谱维数有关。我们发现,在权重因子 r 的不同范围内,ATT 的主导项以不同的方式增长,即与网络大小呈超线性、线性和次线性关系。此外,得到的结果表明,改变行走规则对捕获效率的主导标度没有影响。本文中的所有结果都有助于我们更深入地了解链路权重、网络结构和行走规则对复杂网络性质和功能的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验