Department of Mathematical Sciences, George Mason University, 4400 University Dr., Fairfax, Virginia 22030, USA.
Chaos. 2013 Sep;23(3):033113. doi: 10.1063/1.4813600.
A period-doubling cascade is often seen in numerical studies of those smooth (one-parameter families of) maps for which as the parameter is varied, the map transitions from one without chaos to one with chaos. Our emphasis in this paper is on establishing the existence of such a cascade for many maps with phase space dimension 2. We use continuation methods to show the following: under certain general assumptions, if at one parameter there are only finitely many periodic orbits, and at another parameter value there is chaos, then between those two parameter values there must be a cascade. We investigate only families that are generic in the sense that all periodic orbit bifurcations are generic. Our method of proof in showing there is one cascade is to show there must be infinitely many cascades. We discuss in detail two-dimensional families like those which arise as a time-2π maps for the Duffing equation and the forced damped pendulum equation.
倍周期分岔在对那些光滑的(单参数族)映射进行数值研究时经常出现,随着参数的变化,映射从没有混沌的状态转变为具有混沌的状态。本文的重点是为许多相空间维数为 2 的映射建立这样一个级联的存在性。我们使用连续方法证明了以下结论:在某些一般假设下,如果在一个参数处只有有限个周期轨道,而在另一个参数值处存在混沌,那么在这两个参数值之间必然存在级联。我们只研究那些在所有周期轨道分岔都是通用的意义上是通用的族。在证明存在一个级联的过程中,我们的证明方法是证明必须存在无限多个级联。我们详细讨论了像那些作为 Duffing 方程和受迫阻尼摆方程的时间 2π 映射所产生的二维族。