Qin B W, Chung K W, Rodríguez-Luis A J, Belhaq M
Department of Mathematics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong.
Departamento de Matemática Aplicada II, E.T.S. de Ingeniería, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Sevilla, Spain.
Chaos. 2018 Sep;28(9):093107. doi: 10.1063/1.5030692.
In this paper, we investigate the dynamics of a fourth-order normal form near a double Takens-Bogdanov bifurcation. The reduced system of this normal form possesses eight pairs of homoclinic orbits for certain parameter values. The nonlinear time transformation method is applied to obtain an analytical approximation of the homoclinic orbit in the perturbed system and to construct the homoclinic bifurcation curve as well. Using numerical continuation, period-doubling and homoclinic-doubling cascades emanating from a codimension-2 bifurcation point are found. A codimension-2 homoclinic-gluing bifurcation point at which several homoclinic orbits concerning the origin glue together to form a new homoclinic orbit is also obtained. It is shown that in the vicinity of these bifurcation points, the system may exhibit chaos and chaotic attractors.
在本文中,我们研究了双Takens - Bogdanov分岔附近的四阶范式的动力学。对于某些参数值,该范式的约化系统具有八对同宿轨道。应用非线性时间变换方法来获得受扰系统中同宿轨道的解析近似,并构建同宿分岔曲线。使用数值延拓,发现了从余维2分岔点产生的倍周期和同宿倍化级联。还得到了一个余维2同宿胶合分岔点,在该点处与原点相关的几个同宿轨道胶合在一起形成一个新的同宿轨道。结果表明,在这些分岔点附近,系统可能会出现混沌和混沌吸引子。