Suppr超能文献

错牙合畸形患者面部吸引力的评估:一种采用普洛透斯分析法的机器学习技术

Evaluation of facial attractiveness for patients with malocclusion: a machine-learning technique employing Procrustes.

作者信息

Yu Xiaonan, Liu Bin, Pei Yuru, Xu Tianmin

机构信息

a  PhD Student, Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China.

出版信息

Angle Orthod. 2014 May;84(3):410-6. doi: 10.2319/071513-516.1. Epub 2013 Oct 3.

Abstract

OBJECTIVE

To establish an objective method for evaluating facial attractiveness from a set of orthodontic photographs.

MATERIALS AND METHODS

One hundred eight malocclusion patients randomly selected from six universities in China were randomly divided into nine groups, with each group containing an equal number of patients with Class I, II, and III malocclusions. Sixty-nine expert Chinese orthodontists ranked photographs of the patients (frontal, lateral, and frontal smiling photos) before and after orthodontic treatment from "most attractive" to "least attractive" in each group. A weighted mean ranking was then calculated for each patient, based on which a three-point scale was created. Procrustes superimposition was conducted on 101 landmarks identified on the photographs. A support vector regression (SVR) function was set up according to the coordinate values of identified landmarks of each photographic set and its corresponding grading. Its predictive ability was tested for each group in turn.

RESULTS

The average coincidence rate obtained for comparisons of the subjective ratings with the SVR evaluation was 71.8% according to 18 verification tests.

CONCLUSIONS

Geometric morphometrics combined with SVR may be a prospective method for objective comprehensive evaluation of facial attractiveness in the near future.

摘要

目的

从一组正畸照片中建立一种评估面部吸引力的客观方法。

材料与方法

从中国六所大学随机选取108例错牙合患者,随机分为9组,每组中I类、II类和III类错牙合患者数量相等。69名中国正畸专家对患者正畸治疗前后的照片(正面、侧面和正面微笑照片)在每组中从“最有吸引力”到“最无吸引力”进行排序。然后计算每位患者的加权平均排名,并据此创建一个三点量表。对照片上识别出的101个地标点进行普氏叠加。根据每组照片识别出的地标点坐标值及其相应等级建立支持向量回归(SVR)函数。依次对每组进行预测能力测试。

结果

根据18次验证测试,主观评分与SVR评估比较的平均符合率为71.8%。

结论

几何形态测量学结合SVR可能是在不久的将来对面部吸引力进行客观综合评估的一种前瞻性方法。

相似文献

9
Impact of facial components on the attractiveness of face: A perception-based study.面部组成部分对面部吸引力的影响:一项基于感知的研究。
Am J Orthod Dentofacial Orthop. 2022 Nov;162(5):e218-e229. doi: 10.1016/j.ajodo.2022.07.012. Epub 2022 Aug 26.

引用本文的文献

2
Impact of dentofacial deformity on the chance of being hired for a job.牙颌面畸形对就业机会的影响。
Front Psychol. 2023 Dec 1;14:1037167. doi: 10.3389/fpsyg.2023.1037167. eCollection 2023.
10
Machine learning in orthodontics: .机器学习在正畸学中的应用: 。
Angle Orthod. 2020 Jan;90(1):77-84. doi: 10.2319/012919-59.1. Epub 2019 Aug 12.

本文引用的文献

3
Changes in esthetic standards since 1940.自 1940 年以来审美标准的变化。
Am J Orthod Dentofacial Orthop. 2010 Apr;137(4):450.e1-9; discussion 450-1. doi: 10.1016/j.ajodo.2009.10.029.
4
New "golden" ratios for facial beauty.面部美的新“黄金”比例。
Vision Res. 2010 Jan;50(2):149-54. doi: 10.1016/j.visres.2009.11.003. Epub 2009 Nov 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验