School of Physics and Advanced Materials, University of Technology, Sydney , P.O. Box 123, Broadway, New South Wales 2007, Australia.
ACS Appl Mater Interfaces. 2013 Nov 13;5(21):10690-5. doi: 10.1021/am402828k. Epub 2013 Oct 18.
Using first principles calculations we investigate the binding and diffusion of Li on silicene and evaluate the prospects for application to Li-ion batteries. We find that the defect formation energy for silicene is half that of graphene, showing that silicene is more likely to contain defects. The overall lithium adsorption energy on silicene with defects is greater than the bulk cohesive energy of lithium giving stability for use in storage. Our results predict high mobility for lithium atoms on the surface of silicene with energy barriers in the range of 0.28-0.30 eV. Further, we find that the diffusion barrier through silicene is significantly lower than the diffusion barrier through graphene, with a value of 0.05 eV for the double vacancy and 0.88 eV for the single vacancy. The low diffusion barriers, both on the surface and through the hollow site, suggest a suitable material for use in Li-ion batteries.
使用第一性原理计算,我们研究了 Li 在硅烯上的结合和扩散,并评估了其在锂离子电池中的应用前景。我们发现硅烯的缺陷形成能是石墨烯的一半,表明硅烯更容易包含缺陷。具有缺陷的硅烯上整体锂吸附能大于锂的体结合能,为其在存储中的应用提供了稳定性。我们的结果预测了在硅烯表面上锂原子的高迁移率,其能垒在 0.28-0.30 eV 的范围内。此外,我们发现穿过硅烯的扩散势垒明显低于穿过石墨烯的扩散势垒,双空位的扩散势垒值为 0.05 eV,单空位的扩散势垒值为 0.88 eV。表面和中空位的低扩散势垒表明,硅烯是一种适合用于锂离子电池的材料。