Iyikanat Fadil, Kandemir Ali, Bacaksiz Cihan, Sahin Hasan
Department of Physics, Izmir Institute of Technology, 35430, Izmir, Turkey.
Department of Materials Science and Engineering, Izmir Institute of Technology, 35430, Izmir, Turkey.
Beilstein J Nanotechnol. 2017 Aug 23;8:1742-1748. doi: 10.3762/bjnano.8.175. eCollection 2017.
Using first-principles density functional theory calculations, we investigate adsorption properties and the diffusion mechanism of a Li atom on hydrogenated single-layer α- and β-silicene on a Ag(111) surface. It is found that a Li atom binds strongly on the surfaces of both α- and β-silicene, and it forms an ionic bond through the transfer of charge from the adsorbed atom to the surface. The binding energies of a Li atom on these surfaces are very similar. However, the diffusion barrier of a Li atom on H-α-Si is much higher than that on H-β-Si. The energy surface calculations show that a Li atom does not prefer to bind in the vicinity of the hydrogenated upper-Si atoms. Strong interaction between Li atoms and hydrogenated silicene phases and low diffusion barriers show that α- and β-silicene are promising platforms for Li-storage applications.
通过第一性原理密度泛函理论计算,我们研究了锂原子在Ag(111)表面氢化单层α - 硅烯和β - 硅烯上的吸附特性及扩散机制。研究发现,锂原子在α - 硅烯和β - 硅烯表面均有强烈的结合,并且通过电荷从吸附原子转移到表面形成离子键。锂原子在这些表面上的结合能非常相似。然而,锂原子在H-α - Si上的扩散势垒远高于在H-β - Si上的扩散势垒。能量表面计算表明,锂原子不倾向于在氢化上硅原子附近结合。锂原子与氢化硅烯相之间的强相互作用以及低扩散势垒表明,α - 硅烯和β - 硅烯是有前景的锂存储应用平台。