Suppr超能文献

通过表面化学重构稳定二维五硅烯,用于柔性锂离子电池阳极。

Stabilization of two-dimensional penta-silicene for flexible lithium-ion battery anodes via surface chemistry reconfiguration.

机构信息

Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China.

出版信息

Phys Chem Chem Phys. 2019 Jan 17;21(3):1029-1037. doi: 10.1039/c8cp05008b.

Abstract

Silicon-based two-dimensional (2D) materials have unique properties and extraordinary engineering applications. However, penta-silicene is unstable. Herein, by employing first-principles calculations, we provide a facile surface chemistry method, i.e. functionalization, to acquire and reconfigure stable penta-silicene for use in flexible lithium-ion batteries. Our results of density functional theory calculations showed that the reconfigured penta-silicene nanosheets possess a broad range of properties, including semiconductors with an indirect bandgap, semiconductors with a direct bandgap, semimetals and metals. For fluorinated penta-silicene, a fluorine-concentration-induced transition from a semiconductor to a metal is found. For fully fluorinated penta-silicene, a mechanically induced transition from a semiconductor with an indirect bandgap to a semiconductor with a direct bandgap is obtained. Our calculation results showed the reconfigured penta-silicene is a high-performance anode for use in flexible lithium (Li)-ion batteries. A transition from a semiconductor to a metal with adsorption of Li atoms indicates a high electrical conductivity. It possesses low Li diffusion barriers (0.08-0.28 eV), demonstrating a high mobility of Li ions. The metallic feature and low Li diffusion barriers reveal that it has an ultrafast charge/discharge rate. This work suggests that surface chemistry reconfiguration provides new stable materials with excellent mechanical properties and tunable electronic properties for their promising applications in flexible metal-ion batteries and solar batteries as well as nanoelectronics devices.

摘要

基于硅的二维(2D)材料具有独特的性质和非凡的工程应用。然而,五硅烯是不稳定的。在此,我们通过第一性原理计算,提供了一种简便的表面化学方法,即功能化,以获得和重新配置稳定的五硅烯,用于柔性锂离子电池。我们的密度泛函理论计算结果表明,重构的五硅烯纳米片具有广泛的性质,包括具有间接带隙的半导体、具有直接带隙的半导体、半金属和金属。对于氟化五硅烯,发现了从半导体到金属的氟浓度诱导转变。对于完全氟化的五硅烯,通过机械诱导从具有间接带隙的半导体转变为具有直接带隙的半导体。我们的计算结果表明,重构的五硅烯是一种高性能的柔性锂离子(Li)电池阳极。吸附 Li 原子后从半导体到金属的转变表明具有高导电性。它具有较低的 Li 扩散势垒(0.08-0.28 eV),表明 Li 离子具有较高的迁移率。金属特性和低 Li 扩散势垒表明它具有超快的充放电速率。这项工作表明,表面化学重构为具有优异机械性能和可调谐电子性能的新材料提供了新的稳定材料,有望应用于柔性金属离子电池和太阳能电池以及纳米电子器件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验