Prous Institute for Biomedical Research, Rambla de Catalunya, 135, 3-2, Barcelona 08008, Spain.
Toxicol Appl Pharmacol. 2013 Dec 15;273(3):427-34. doi: 10.1016/j.taap.2013.09.015. Epub 2013 Sep 30.
As indicated in ICH M7 draft guidance, in silico predictive tools including statistically-based QSARs and expert analysis may be used as a computational assessment for bacterial mutagenicity for the qualification of impurities in pharmaceuticals. To address this need, we developed and validated a QSAR model to predict Salmonella t. mutagenicity (Ames assay outcome) of pharmaceutical impurities using Prous Institute's Symmetry(SM), a new in silico solution for drug discovery and toxicity screening, and the Mold2 molecular descriptor package (FDA/NCTR). Data was sourced from public benchmark databases with known Ames assay mutagenicity outcomes for 7300 chemicals (57% mutagens). Of these data, 90% was used to train the model and the remaining 10% was set aside as a holdout set for validation. The model's applicability to drug impurities was tested using a FDA/CDER database of 951 structures, of which 94% were found within the model's applicability domain. The predictive performance of the model is acceptable for supporting regulatory decision-making with 84±1% sensitivity, 81±1% specificity, 83±1% concordance and 79±1% negative predictivity based on internal cross-validation, while the holdout dataset yielded 83% sensitivity, 77% specificity, 80% concordance and 78% negative predictivity. Given the importance of having confidence in negative predictions, an additional external validation of the model was also carried out, using marketed drugs known to be Ames-negative, and obtained 98% coverage and 81% specificity. Additionally, Ames mutagenicity data from FDA/CFSAN was used to create another data set of 1535 chemicals for external validation of the model, yielding 98% coverage, 73% sensitivity, 86% specificity, 81% concordance and 84% negative predictivity.
正如 ICH M7 指导草案所指出的,基于统计学的 QSAR 等计算工具和专家分析可用于评估药品中杂质的细菌致突变性,从而对其进行鉴定。为满足这一需求,我们开发并验证了一种 QSAR 模型,该模型使用 Prous Institute 的 Symmetry(SM)、一种用于药物发现和毒性筛选的新型计算解决方案,以及 Mold2 分子描述符包(FDA/NCTR)来预测药物杂质的沙门氏菌突变性(Ames 试验结果)。数据来源于具有已知 Ames 试验致突变性结果的公共基准数据库,涉及 7300 种化学物质(57%为致突变物)。其中 90%的数据用于训练模型,其余 10%留作验证集。该模型的适用性通过 FDA/CDER 的 951 个结构数据库进行了测试,其中 94%的结构在模型的适用性范围内。基于内部交叉验证,该模型具有可接受的预测性能,可支持监管决策,其灵敏度为 84±1%、特异性为 81±1%、一致性为 83±1%、阴性预测值为 79±1%,而验证集的结果为灵敏度 83%、特异性 77%、一致性 80%和阴性预测值 78%。鉴于对阴性预测有信心的重要性,还对模型进行了额外的外部验证,使用了已知 Ames 阴性的市售药物,结果为覆盖率 98%和特异性 81%。此外,还使用 FDA/CFSAN 的 Ames 致突变性数据创建了另一个包含 1535 种化学物质的数据集,对模型进行外部验证,结果为覆盖率 98%、灵敏度 73%、特异性 86%、一致性 81%和阴性预测值 84%。