Suppr超能文献

使用公开可用的基准致突变性数据库对Toxtree和SciQSAR计算机预测软件进行验证及其在药品杂质鉴定中的适用性。

Validation of Toxtree and SciQSAR in silico predictive software using a publicly available benchmark mutagenicity database and their applicability for the qualification of impurities in pharmaceuticals.

作者信息

Contrera Joseph F

机构信息

Computational Toxicology Services LLC, P.O. Box 1565, Olney, MD 20830, USA.

出版信息

Regul Toxicol Pharmacol. 2013 Nov;67(2):285-93. doi: 10.1016/j.yrtph.2013.08.008. Epub 2013 Aug 19.

Abstract

The draft ICH M7 guidance (US FDA, 2013) recommends that the computational assessment of bacterial mutagenicity for the qualification of impurities in pharmaceuticals be performed using an expert rule-based method and a second statistically-based (Q)SAR method. The public nonproprietary 6489 compound Hansen benchmark mutagenicity data set was used as an external validation data set for Toxtree, a free expert rule-based SAR software. This is the largest known external validation of Toxtree. The Toxtree external validation specificity, sensitivity, concordance and false negative rate for this mutagenicity data set was 66%, 80%, 74% and 20%, respectively. This mutagenicity data set was also used to create a statistically-based SciQSAR-Hansen mutagenicity model. In a 10% leave-group-out internal cross validation study the specificity, sensitivity, concordance and false negative rate for the SciQSAR mutagenicity model was 71%, 83%, 77% and 17%, respectively. Combining Toxtree and SciQSAR predictions and scoring a positive finding in either software as a positive mutagenicity finding reduced the false negative rate to 7% and increased sensitivity to 93% at the expense of specificity which decreased to 53%. The results of this study support the applicability of Toxtree, and the SciQSAR-Hansen mutagenicity model for the qualification of impurities in pharmaceuticals.

摘要

国际人用药品注册技术协调会(ICH)M7指南草案(美国食品药品监督管理局,2013年)建议,对于药品中杂质的细菌致突变性鉴定,应使用基于专家规则的方法和第二种基于统计的(定量)构效关系(QSAR)方法进行计算评估。公开的非专利6489化合物汉森基准致突变性数据集被用作Toxtree(一款免费的基于专家规则的构效关系软件)的外部验证数据集。这是已知的对Toxtree最大规模的外部验证。该致突变性数据集的Toxtree外部验证特异性、敏感性、一致性和假阴性率分别为66%、80%、74%和20%。该致突变性数据集还被用于创建一个基于统计的SciQSAR - 汉森致突变性模型。在一项10%留出组的内部交叉验证研究中,SciQSAR致突变性模型的特异性、敏感性、一致性和假阴性率分别为71%、83%、77%和17%。将Toxtree和SciQSAR的预测结果相结合,并将任一软件中的阳性结果计为阳性致突变性结果,可将假阴性率降至7%,并将敏感性提高到93%,但特异性降至53%。本研究结果支持Toxtree以及SciQSAR - 汉森致突变性模型在药品杂质鉴定中的适用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验