Suppr超能文献

嵌段共聚物混合物作为抗菌水凝胶用于生物膜清除。

Block copolymer mixtures as antimicrobial hydrogels for biofilm eradication.

机构信息

Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.

出版信息

Biomaterials. 2013 Dec;34(38):10278-86. doi: 10.1016/j.biomaterials.2013.09.029. Epub 2013 Sep 30.

Abstract

Current antimicrobial strategies have mostly been developed to manage infections due to planktonic cells. However, microbes in their nature state will tend to exist by attaching to and growing on living and inanimate surfaces that result in the formation of biofilms. Conventional therapies for treating biofilm-related infections are likely to be insufficient due to the lower susceptibility of microbes that are embedded in the biofilm matrix. In this study, we report the development of biodegradable hydrogels from vitamin E-functionalized polycarbonates for antimicrobial applications. These hydrogels were formed by incorporating positively-charged polycarbonates containing propyl and benzyl side chains with vitamin E moiety into physically cross-linked networks of "ABA"-type polycarbonate and poly(ethylene glycol) triblock copolymers. Investigations of the mechanical properties of the hydrogels showed that the G' values ranged from 1400 to 1600 Pa and the presence of cationic polycarbonate did not affect the stiffness of the hydrogels. Shear-thinning behavior was observed as the hydrogels displayed high viscosity at low shear rates that dramatically decreased as the shear rate increased. In vitro antimicrobial studies revealed that the more hydrophobic VE/BnCl(1:30)-loaded hydrogels generally exhibited better antimicrobial/antifungal effects compared to the VE/PrBr(1:30) counterpart as lower minimum biocidal concentrations (MBC) were observed in Staphylococcus aureus (Gram-positive), Escherichia coli (Gram-negative) and Candida albicans (fungus) (156.2, 312.5, 312.5 mg/L for VE/BnCl(1:30) and 312.5, 2500 and 625 mg/L for VE/PrBr(1:30) respectively). Similar trends were observed for the treatment of biofilms where VE/BnCl(1:30)-loaded hydrogels displayed better efficiency with regards to eradication of biomass and reduction of microbe viability of the biofilms. Furthermore, a high degree of synergistic antimicrobial effects was also observed through the co-delivery of antimicrobial polycarbonates with a conventionally-used antifungal agent, fluconazole. These hydrogels also displayed excellent compatibility with human dermal fibroblasts with cell viability >80% after treatment with hydrogels loaded with cationic polymers and/or fluconazole at minimum biocidal concentrations (MBC).

摘要

目前的抗菌策略主要是为了管理浮游细胞引起的感染而开发的。然而,微生物在其自然状态下往往会附着在活体和无生命的表面上,并在这些表面上生长,从而形成生物膜。由于嵌入生物膜基质中的微生物的敏感性较低,因此常规治疗生物膜相关感染的方法可能不够有效。在这项研究中,我们报告了由维生素 E 功能化聚碳酸酯制备可生物降解水凝胶的研究进展,用于抗菌应用。这些水凝胶是通过将含有丙基和苄基侧链的带正电荷的聚碳酸酯与维生素 E 部分一起掺入“ABA”型聚碳酸酯和聚(乙二醇)三嵌段共聚物的物理交联网络中而形成的。对水凝胶的机械性能的研究表明,G'值范围为 1400 至 1600 Pa,并且阳离子聚碳酸酯的存在不会影响水凝胶的硬度。观察到剪切稀化行为,因为水凝胶在低剪切速率下表现出高粘度,而当剪切速率增加时,粘度急剧降低。体外抗菌研究表明,与 VE/PrBr(1:30) 相比,疏水性更高的 VE/BnCl(1:30)-负载水凝胶通常表现出更好的抗菌/抗真菌效果,因为在金黄色葡萄球菌(革兰氏阳性菌)、大肠杆菌(革兰氏阴性菌)和白色念珠菌(真菌)中观察到的最低杀菌浓度(MBC)更低(VE/BnCl(1:30) 为 156.2、312.5、312.5 mg/L,VE/PrBr(1:30) 为 312.5、2500 和 625 mg/L)。在生物膜治疗中也观察到了类似的趋势,负载 VE/BnCl(1:30) 的水凝胶在消除生物膜的生物量和降低微生物活力方面显示出更好的效率。此外,通过将抗菌聚碳酸酯与常规使用的抗真菌剂氟康唑共同递送,还观察到高度协同的抗菌作用。这些水凝胶在负载阳离子聚合物和/或氟康唑的水凝胶的最小杀菌浓度(MBC)下,与人类真皮成纤维细胞的相容性也非常好,细胞活力>80%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验