Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536 CNRS-Université, Bordeaux Segalen, LabEx TRAIL-IBIO, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France.
Pharmacol Res. 2013 Dec;78:11-7. doi: 10.1016/j.phrs.2013.09.007. Epub 2013 Oct 1.
Our aim was to monitor the effects of resveratrol (RSV) on the respective contribution of glycolysis and oxidative phosphorylation on the unidirectional flux of ATP synthesis in whole isolated rat liver perfused with Krebs-Henseleit Buffer (KHB). The rate of tissular ATP supply was measured directly by monitoring the chemical exchange Pi toward ATP with saturation transfer (ST) (31)P nuclear magnetic resonance, a method applied for the first time for studying the effects of RSV. ST allows the measurement of the total cellular Pi→ATP chemical exchange; after specific inhibition of glycolysis with iodacetate, ST could provide the Pi→ATP flux issued from mitochondria. This latter was compared to mitochondrial ATP turn-over evaluated after chemical ischemia (CI), performed with specific inhibition (KCN) of oxidative phosphorylation, and measured by standard (31)P NMR spectroscopy. In controls (KHB alone), the apparent time constant (ks) of Pi exchange toward ATP as measured by ST was 0.48±0.04s(-1) leading to a total ATP synthesis rate of 37±3.9μmolmin(-1)g(-1). KHB+RSV perfusion increased ks (+52%; p=0.0009 vs. KHB) leading to an enhanced rate of total ATP synthesis (+52%; p=0.01 vs. KHB). When glycolysis was previously inhibited in KHB, both ks and ATP synthesis flux dramatically decreased (-87% and -86%, respectively, p<0.0001 vs. KHB without inhibition), evidencing a collapse of Pi-to-ATP exchange. However, glycolysis inhibition in KHB+RSV reduced to less extent ks (-41%, p=0.0005 vs. KHB+RSV without inhibition) and ATP synthesis flux (-18%). Using the CI method in KHB and KHB+RSV, KCN addition after glycolysis inhibition induced a rapid fall to zero of the ATP content. The mitochondrial ATP turnover R(t0) and its time constant kd mito were similar in KHB (1.18±0.19μmolmin(-1)g(-1) and 0.91±0.13min(-1)) and KHB+RSV (1.36±0.26μmolmin(-1)g(-1) and 0.77±0.18min(-1)). Since mitochondrial ATP turnover was not increased by RSV, the stimulation of Pi-to-ATP exchange by RSV mainly reflected an increase in glycolytic ATP synthesis flux. Moreover, the maintenance by RSV of a high level of Pi-to-ATP exchange after glycolysis inhibition evidenced a protective effect of the polyphenol, in agreement with our previous hypothesis of a stimulation of substrate flux throughout the glycolysis 3-carbon step.
我们的目的是监测白藜芦醇(RSV)对用 Krebs-Henseleit 缓冲液(KHB)灌注的分离大鼠肝单向合成 ATP 通量的糖酵解和氧化磷酸化各自贡献的影响。通过监测化学交换 Pi 对 ATP 的饱和转移(ST)(31)P 磁共振来直接测量组织 ATP 供应的速率,这是首次用于研究 RSV 影响的方法。ST 允许测量总细胞 Pi→ATP 的化学交换;在用碘乙酸特异性抑制糖酵解后,ST 可以提供源自线粒体的 Pi→ATP 通量。后者与化学缺血(CI)后评估的线粒体 ATP 周转进行了比较,CI 是通过氧化磷酸化的特异性抑制(KCN)来进行的,并通过标准(31)P NMR 光谱进行测量。在对照(仅 KHB)中,通过 ST 测量的 Pi 对 ATP 的交换的表观时间常数(ks)为 0.48±0.04s(-1),导致总 ATP 合成速率为 37±3.9μmolmin(-1)g(-1)。KHB+RSV 灌注增加了 ks(+52%;p=0.0009 与 KHB),导致总 ATP 合成率增加(+52%;p=0.01 与 KHB)。当先前在 KHB 中抑制糖酵解时,ks 和 ATP 合成通量均急剧下降(分别为-87%和-86%,p<0.0001 与未抑制的 KHB),表明 Pi 到 ATP 的交换崩溃。然而,在 KHB+RSV 中抑制糖酵解时,ks 和 ATP 合成通量的减少程度较小(分别为-41%,p=0.0005 与 KHB+RSV 无抑制)。在 KHB 和 KHB+RSV 中使用 CI 方法,在抑制糖酵解后加入 KCN 会迅速将 ATP 含量降至零。在 KHB(1.18±0.19μmolmin(-1)g(-1)和 0.91±0.13min(-1))和 KHB+RSV(1.36±0.26μmolmin(-1)g(-1)和 0.77±0.18min(-1))中,线粒体 ATP 周转率 R(t0)及其时间常数 kd mito 相似。由于 RSV 未增加线粒体 ATP 周转率,因此 RSV 对 Pi 到 ATP 交换的刺激主要反映了糖酵解 ATP 合成通量的增加。此外,RSV 在抑制糖酵解后维持高水平的 Pi 到 ATP 交换,表明多酚具有保护作用,这与我们之前关于通过糖酵解 3-碳步骤刺激底物通量的假设一致。