Dipartimento di Ingegneria dell'Innovazione, Università del Salento, via Monteroni, 73100 Lecce - Italy.
Sci Rep. 2013 Oct 4;3:2848. doi: 10.1038/srep02848.
The challenges in development of solid oxide fuel cells (SOFCs) are reducing their dimensions and increasing their efficiency and durability, which requires physicochemical characterization at micro-scales of the device components during operation conditions. Recently, the unique potential of scanning photoelectron microscopy (SPEM) has been demonstrated by in-situ studies of externally-driven SOFCs, which mimic real devices. Here we overcome the gap between model and real systems using a single-chamber Ni|YSZ|Mn SOFC, supporting a range of self-driven electrochemical reactions in variable gas environments and temperatures. The reported SPEM results, obtained during spontaneous electrochemical processes occurring in reactive gas ambient, demonstrate the chemical evolution of electrodic material, in particular the lateral distribution of the oxidation state and the induced local potential, clearly marking out the electrochemically most active micro-regions of the Ni anode.
固体氧化物燃料电池 (SOFCs) 的发展面临着降低尺寸、提高效率和耐久性的挑战,这需要在操作条件下对器件组件进行微观尺度的物理化学特性分析。最近,扫描光电显微镜 (SPEM) 的独特潜力已经通过对外部驱动 SOFC 的原位研究得到了证明,这些研究模拟了真实的设备。在这里,我们使用单腔室 Ni|YSZ|Mn SOFC 克服了模型和实际系统之间的差距,该电池支持在不同气体环境和温度下进行一系列自驱动电化学反应。在反应性气体环境中自发电化学过程中获得的报告的 SPEM 结果表明了电极材料的化学演变,特别是氧化态的横向分布和诱导的局部电势,清楚地标记出了 Ni 阳极中电化学活性最强的微区。