Suppr超能文献

人体红细胞中的氯离子转运

Chloride transport in human red cells.

作者信息

Dalmark M

出版信息

J Physiol. 1975 Aug;250(1):39-64. doi: 10.1113/jphysiol.1975.sp011042.

Abstract
  1. The chloride equilibrium flux (chloride self-exchange) was determined by measuring the rate of 36Cl efflux from radioactively labelled human red cells. The cellular chloride concentration was varied between 5 and 700 mM by the nystatin technique (Cass & Dalmark, 1973). The chloride transport capacity was not affected by the nystatin technique. 2. The chloride equilibrium flux showed saturation kinetics in the pH range between 6-2 and 9-2 (0 degrees C). The chloride transport decreased at chloride concentrations higher than those which gave the maximum transport. 3. The apparent half-saturation constant, (K1/2), depended on the pH and whether the chloride transport was perceived as a function of the chloride concentration in the medium or in the cell water. The (K1/2)m increased and the (K1/2)c decreased with increasing pH. The dependence of the chloride transport on the chloride concentration was described by Michaelis-Menten kinetics at pH 7-2, but at values of pH outside pH 7-8 S-shaped or steeper graphs were observed. 4. The chloride equilibrium flux varied with the pH at constant chloride concentration in the medium (pH 5-7-9-5). The transport had a bell-shaped pH dependence at chloride concentrations below 200 mM. At chloride concentrations between 300 and 600 mM the chloride transport increased with increasing pH to reach a plateau around pH 8. The position of the acidic branches of the pH graphs was independent of the chloride concentration (25-600 mM), but the position of the alkaline branches moved towards higher values of pH with increasing chloride concentration (5-150 mM). Thus, the position of the pH optimum increased with increasing chloride concentration. The chloride transport at low pH values was a function of the inverse second power of the hydrogen ion concentration. The pK of the groups which caused the inhibition was approximately 6 and independent of the temperature (0-18 degrees C). 5. The chloride equilibrium flux as a function of chloride concentration, pH, and temperature could be described by a transport model with a mobile, positively charged, chloride binding carrier with a single chloride dissociation constant of 33 mM, a transport capacity of 900 m-mole/3 x 10(13) cells.min (pH 7-2, 0 degrees C), and an Arrhenius activation energy of 30 kcal/mole. The pH dependence of the transport of inorganic monovalent and divalent anions is discussed in relation to the suggested model.
摘要
  1. 通过测量放射性标记的人体红细胞中³⁶Cl的流出速率来测定氯化物平衡通量(氯化物自我交换)。采用制霉菌素技术(卡斯和达尔马克,1973年)使细胞内氯化物浓度在5至700 mM之间变化。制霉菌素技术不影响氯化物转运能力。2. 在6.2至9.2的pH范围内(0℃),氯化物平衡通量呈现饱和动力学。当氯化物浓度高于产生最大转运量的浓度时,氯化物转运量下降。3. 表观半饱和常数(K₁/₂)取决于pH值,以及氯化物转运是被视为培养基中还是细胞内水中氯化物浓度的函数。随着pH值升高,(K₁/₂)m增大,(K₁/₂)c减小。在pH 7.2时,氯化物转运对氯化物浓度的依赖性可用米氏动力学描述,但在pH值偏离7.8时,观察到S形或更陡峭的曲线。4. 在培养基中氯化物浓度恒定(pH 5 - 7 - 9.5)的情况下,氯化物平衡通量随pH值变化。在氯化物浓度低于200 mM时,转运呈现钟形pH依赖性。在氯化物浓度为300至600 mM之间时,氯化物转运随pH值升高而增加,在pH约8时达到平稳状态。pH曲线酸性分支的位置与氯化物浓度(25 - 600 mM)无关,但碱性分支的位置随着氯化物浓度(5 - 150 mM)的增加向更高的pH值移动。因此,最适pH值的位置随氯化物浓度增加而升高。低pH值下的氯化物转运是氢离子浓度倒数平方的函数。导致抑制作用的基团的pK约为6,且与温度(0 - 18℃)无关。5. 氯化物平衡通量作为氯化物浓度、pH值和温度的函数,可以用一个转运模型来描述,该模型具有一个可移动的、带正电荷的氯化物结合载体,单个氯化物解离常数为33 mM,转运能力为900毫摩尔/3×10¹³个细胞·分钟(pH 7.2,0℃),阿累尼乌斯活化能为30千卡/摩尔。结合所提出的模型讨论了无机单价和二价阴离子转运的pH依赖性。

相似文献

1
Chloride transport in human red cells.人体红细胞中的氯离子转运
J Physiol. 1975 Aug;250(1):39-64. doi: 10.1113/jphysiol.1975.sp011042.
2
Kinetics of glucose transport in human erythrocytes.人红细胞中葡萄糖转运的动力学
J Physiol. 1983 Jun;339:339-54. doi: 10.1113/jphysiol.1983.sp014720.
7
Chloride and water distribution in human red cells.人体红细胞中氯离子和水的分布
J Physiol. 1975 Aug;250(1):65-84. doi: 10.1113/jphysiol.1975.sp011043.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验