Garbacz Grzegorz, Kołodziej Bartosz, Koziolek Mirko, Weitschies Werner, Klein Sandra
Physiolution GmbH, Walther-Rathenau-Straße 49 a, 17489 Greifswald, Germany.
Eur J Pharm Sci. 2014 Jan 23;51:224-31. doi: 10.1016/j.ejps.2013.09.020. Epub 2013 Oct 3.
The hydrogen carbonate buffer is considered as the most biorelevant buffer system for the simulation of intestinal conditions and covers the physiological pH range of the luminal fluids from pH 5.5 to about pH 8.4. The pH value of a hydrogen carbonate buffer is the result of a complex and dynamic interplay of the concentration of hydrogen carbonate ions, carbonic acid, the concentration of dissolved and solvated carbon dioxide and its partial pressure above the solution. The complex equilibrium between the different ions results in a thermodynamic instability of hydrogen carbonate solutions. In order to use hydrogen carbonate buffers with pH gradients in the physiological range and with the dynamics observed in vivo without changing the ionic strength of the solution, we developed a device (pHysio-grad®) that provides both acidification of the dissolution medium by microcomputer controlled carbon dioxide influx and alkalisation by degassing. This enables a continuous pH control and adjustment during dissolution of ionisable compounds. The results of the pH adjustment indicate that the system can compensate even rapid pH changes after addition of a basic or acidic moiety in amounts corresponding up to 90% of the overall buffer capacity. The results of the dissolution tests performed for a model formulation containing ionizable compounds (Nexium 20mg mups) indicate that both the simulated fasting intraluminal pH-profiles and the buffer species can significantly affect the dissolution process by changing the lag time prior to initial drug release and the release rate of the model compound. A prediction of the in vivo release behaviour of this formulation is thus most likely strongly related to the test conditions such as pH and buffer species.
碳酸氢盐缓冲液被认为是模拟肠道环境最具生物相关性的缓冲系统,涵盖了肠腔液生理pH范围,从pH 5.5到约pH 8.4。碳酸氢盐缓冲液的pH值是碳酸氢根离子、碳酸浓度、溶解和溶剂化二氧化碳浓度及其在溶液上方分压之间复杂动态相互作用的结果。不同离子之间的复杂平衡导致碳酸氢盐溶液存在热力学不稳定性。为了在不改变溶液离子强度的情况下,使用具有生理范围内pH梯度且具有体内观察到的动态变化的碳酸氢盐缓冲液,我们开发了一种装置(pHysio-grad®),该装置通过微计算机控制二氧化碳流入实现溶解介质的酸化,并通过脱气实现碱化。这使得在可电离化合物溶解过程中能够进行连续的pH控制和调节。pH调节结果表明,该系统甚至可以补偿添加相当于总缓冲容量90%的碱性或酸性部分后快速的pH变化。对含有可电离化合物的模型制剂(耐信20mg 微粉化片)进行的溶出试验结果表明,模拟的空腹肠腔内pH曲线和缓冲物质都可以通过改变初始药物释放前的滞后时间和模型化合物的释放速率,显著影响溶出过程。因此,该制剂体内释放行为的预测很可能与pH和缓冲物质等试验条件密切相关。