Department of Mathematics, The University of British Columbia, Vancouver, British Columbia, Canada.
J Theor Biol. 2014 Jan 7;340:285-93. doi: 10.1016/j.jtbi.2013.09.032. Epub 2013 Oct 1.
Evolutionary graph theory has grown to be an area of intense study. Despite the amount of interest in the field, it seems to have grown separate from other subfields of population genetics and evolution. In the current work I introduce the concept of Fisher's (1930) reproductive value into the study of evolution on graphs. Reproductive value is a measure of the expected genetic contribution of an individual to a distant future generation. In a heterogeneous graph-structured population, differences in the number of connections among individuals translate into differences in the expected number of offspring, even if all individuals have the same fecundity. These differences are accounted for by reproductive value. The introduction of reproductive value permits the calculation of the fixation probability of a mutant in a neutral evolutionary process in any graph-structured population for either the moran birth-death or death-birth process.
进化图论已经发展成为一个研究热点。尽管人们对这一领域非常感兴趣,但它似乎已经与群体遗传学和进化的其他分支领域分道扬镳。在当前的工作中,我将 Fisher(1930)的生殖值的概念引入到图上的进化研究中。生殖值是衡量个体对遥远未来一代的遗传贡献的预期值。在一个异质的图结构种群中,个体之间连接数量的差异转化为预期后代数量的差异,即使所有个体的繁殖力都相同。这些差异由生殖值来解释。生殖值的引入允许计算在任何图结构种群中,对于 Moran 出生-死亡或死亡-出生过程,中性进化过程中突变体的固定概率。