Suppr超能文献

基于系统的方法探究结核分枝杆菌复合群内的代谢变异性。

Systems-based approaches to probing metabolic variation within the Mycobacterium tuberculosis complex.

机构信息

Animal Health and Veterinary Laboratories Agency (Weybridge), Department for Bovine Tuberculosis, New Haw, Surrey, United Kingdom ; Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Stag Hill, Guildford, Surrey, United Kingdom.

出版信息

PLoS One. 2013 Sep 17;8(9):e75913. doi: 10.1371/journal.pone.0075913. eCollection 2013.

Abstract

The Mycobacterium tuberculosis complex includes bovine and human strains of the tuberculosis bacillus, including Mycobacterium tuberculosis, Mycobacterium bovis and the Mycobacterium bovis BCG vaccine strain. M. bovis has evolved from a M. tuberculosis-like ancestor and is the ancestor of the BCG vaccine. The pathogens demonstrate distinct differences in virulence, host range and metabolism, but the role of metabolic differences in pathogenicity is poorly understood. Systems biology approaches have been used to investigate the metabolism of M. tuberculosis, but not to probe differences between tuberculosis strains. In this study genome scale metabolic networks of M. bovis and M. bovis BCG were constructed and interrogated, along with a M. tuberculosis network, to predict substrate utilisation, gene essentiality and growth rates. The models correctly predicted 87-88% of high-throughput phenotype data, 75-76% of gene essentiality data and in silico-predicted growth rates matched measured rates. However, analysis of the metabolic networks identified discrepancies between in silico predictions and in vitro data, highlighting areas of incomplete metabolic knowledge. Additional experimental studies carried out to probe these inconsistencies revealed novel insights into the metabolism of these strains. For instance, that the reduction in metabolic capability observed in bovine tuberculosis strains, as compared to M. tuberculosis, is not reflected by current genetic or enzymatic knowledge. Hence, the in silico networks not only successfully simulate many aspects of the growth and physiology of these mycobacteria, but also provide an invaluable tool for future metabolic studies.

摘要

结核分枝杆菌复合体包括牛型和人型结核分枝杆菌,包括结核分枝杆菌、牛分枝杆菌和牛分枝杆菌卡介苗疫苗株。牛分枝杆菌是从结核分枝杆菌样祖先进化而来的,是卡介苗疫苗的祖先。这些病原体在毒力、宿主范围和代谢方面表现出明显的差异,但代谢差异在致病性中的作用知之甚少。系统生物学方法已被用于研究结核分枝杆菌的代谢,但尚未用于探测结核菌株之间的差异。在这项研究中,构建并研究了牛分枝杆菌和牛分枝杆菌卡介苗的基因组规模代谢网络,以及结核分枝杆菌网络,以预测底物利用、基因必需性和生长速率。该模型正确预测了 87-88%的高通量表型数据、75-76%的基因必需性数据,并且预测的生长速率与测量的速率相匹配。然而,代谢网络的分析发现了计算机预测与体外数据之间的差异,突出了代谢知识不完整的领域。为了探究这些不一致之处而进行的额外实验研究揭示了这些菌株代谢的新见解。例如,与结核分枝杆菌相比,牛型结核分枝杆菌观察到的代谢能力降低,这与当前的遗传或酶学知识不符。因此,计算机网络不仅成功地模拟了这些分枝杆菌生长和生理的许多方面,而且为未来的代谢研究提供了一个非常有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f2c/3783153/9234f213e451/pone.0075913.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验