Department Imaging Sciences, University of Rochester, Rochester, NY, USA.
Magn Reson Imaging. 2013 Dec;31(10):1657-67. doi: 10.1016/j.mri.2013.07.016. Epub 2013 Oct 5.
To develop a novel statistical method for analysis of longitudinal DTI data in individual subjects.
The proposed SPatial REgression Analysis of Diffusion tensor imaging (SPREAD) method incorporates a spatial regression fitting of DTI data among neighboring voxels and a resampling method among data at different times. Both numerical simulations and real DTI data from healthy volunteers and multiple sclerosis (MS) patients were used in the study to evaluate this method.
Statistical inference based on SPREAD was shown to perform well through both group comparisons among simulated DTI data of individuals (especially when the group size is smaller than 5) and longitudinal comparisons of human DTI data within the same individual.
When pathological changes of neurodegenerative diseases are heterogeneous in a population, SPREAD provides a unique way to assess abnormality during disease progression at the individual level. Consequently, it has the potential to shed light on how the brain has changed as a result of disease or injury.
开发一种新的统计方法,用于分析个体的纵向 DTI 数据。
所提出的弥散张量成像的空间回归分析(SPREAD)方法结合了相邻体素之间的 DTI 数据的空间回归拟合以及不同时间的数据的重采样方法。本研究使用数值模拟和来自健康志愿者和多发性硬化症(MS)患者的真实 DTI 数据来评估该方法。
基于 SPREAD 的统计推断在个体模拟 DTI 数据的组间比较(尤其是当组的大小小于 5 时)以及同一个体内的 DTI 数据的纵向比较中表现良好。
当人群中的神经退行性疾病的病变具有异质性时,SPREAD 提供了一种独特的方法,可在个体水平上评估疾病进展过程中的异常情况。因此,它有可能揭示疾病或损伤导致大脑发生变化的方式。