Suppr超能文献

牙龈卟啉单胞菌OxyR调节域的结构解释了大肠杆菌和牙龈卟啉单胞菌中OxyR调节子表达的差异。

Structures of the Porphyromonas gingivalis OxyR regulatory domain explain differences in expression of the OxyR regulon in Escherichia coli and P. gingivalis.

作者信息

Svintradze David V, Peterson Darrell L, Collazo-Santiago Evys A, Lewis Janina P, Wright H Tonie

机构信息

OCMB Philips Institute, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298-0566, USA.

出版信息

Acta Crystallogr D Biol Crystallogr. 2013 Oct;69(Pt 10):2091-103. doi: 10.1107/S0907444913019471. Epub 2013 Sep 20.

Abstract

OxyR transcriptionally regulates Escherichia coli oxidative stress response genes through a reversibly reducible cysteine disulfide biosensor of cellular redox status. Structural changes induced by redox changes in these cysteines are conformationally transmitted to the dimer subunit interfaces, which alters dimer and tetramer interactions with DNA. In contrast to E. coli OxyR regulatory-domain structures, crystal structures of Porphyromonas gingivalis OxyR regulatory domains show minimal differences in dimer configuration on changes in cysteine disulfide redox status. This locked configuration of the P. gingivalis OxyR regulatory-domain dimer closely resembles the oxidized (activating) form of the E. coli OxyR regulatory-domain dimer. It correlates with the observed constitutive activation of some oxidative stress genes in P. gingivalis and is attributable to a single amino-acid insertion in P. gingivalis OxyR relative to E. coli OxyR. Modelling of full-length P. gingivalis, E. coli and Neisseria meningitidis OxyR-DNA complexes predicts different modes of DNA binding for the reduced and oxidized forms of each.

摘要

OxyR通过细胞氧化还原状态的可逆还原半胱氨酸二硫键生物传感器转录调控大肠杆菌的氧化应激反应基因。这些半胱氨酸中氧化还原变化诱导的结构变化会构象性地传递到二聚体亚基界面,从而改变二聚体和四聚体与DNA的相互作用。与大肠杆菌OxyR调节域结构不同,牙龈卟啉单胞菌OxyR调节域的晶体结构显示,半胱氨酸二硫键氧化还原状态变化时,二聚体构型的差异极小。牙龈卟啉单胞菌OxyR调节域二聚体的这种锁定构型与大肠杆菌OxyR调节域二聚体的氧化(激活)形式极为相似。这与在牙龈卟啉单胞菌中观察到的一些氧化应激基因的组成型激活相关,并且归因于相对于大肠杆菌OxyR,牙龈卟啉单胞菌OxyR中有一个单氨基酸插入。全长牙龈卟啉单胞菌、大肠杆菌和脑膜炎奈瑟菌OxyR-DNA复合物的模型预测了每种还原形式和氧化形式的不同DNA结合模式。

相似文献

1
Structures of the Porphyromonas gingivalis OxyR regulatory domain explain differences in expression of the OxyR regulon in Escherichia coli and P. gingivalis.
Acta Crystallogr D Biol Crystallogr. 2013 Oct;69(Pt 10):2091-103. doi: 10.1107/S0907444913019471. Epub 2013 Sep 20.
2
Structural basis of the redox switch in the OxyR transcription factor.
Cell. 2001 Apr 6;105(1):103-13. doi: 10.1016/s0092-8674(01)00300-2.
3
The structure of a reduced form of OxyR from Neisseria meningitidis.
BMC Struct Biol. 2010 May 17;10:10. doi: 10.1186/1472-6807-10-10.
5
Mutational analysis to define an activating region on the redox-sensitive transcriptional regulator OxyR.
J Bacteriol. 2006 Dec;188(24):8335-42. doi: 10.1128/JB.01318-06. Epub 2006 Sep 29.
8
Characterization of the OxyR regulon of Neisseria gonorrhoeae.
Mol Microbiol. 2007 Jan;63(1):54-68. doi: 10.1111/j.1365-2958.2006.05478.x. Epub 2006 Nov 27.
10
Role of oxyR in the oral anaerobe Porphyromonas gingivalis.
J Bacteriol. 2006 Apr;188(7):2454-62. doi: 10.1128/JB.188.7.2454-2462.2006.

引用本文的文献

1
Generalization of Young-Laplace, Kelvin, and Gibbs-Thomson equations for arbitrarily curved surfaces.
Biophys J. 2023 Mar 7;122(5):892-904. doi: 10.1016/j.bpj.2023.01.028. Epub 2023 Jan 26.
2
How Bacterial Redox Sensors Transmit Redox Signals via Structural Changes.
Antioxidants (Basel). 2021 Mar 24;10(4):502. doi: 10.3390/antiox10040502.
4
Structural snapshots of OxyR reveal the peroxidatic mechanism of HO sensing.
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):E11623-E11632. doi: 10.1073/pnas.1807954115. Epub 2018 Nov 21.
5
The hydrogen peroxide hypersensitivity of OxyR2 in depends on conformational constraints.
J Biol Chem. 2017 Apr 28;292(17):7223-7232. doi: 10.1074/jbc.M116.743765. Epub 2017 Mar 6.
7
Structural details of the OxyR peroxide-sensing mechanism.
Proc Natl Acad Sci U S A. 2015 May 19;112(20):6443-8. doi: 10.1073/pnas.1424495112. Epub 2015 Apr 30.

本文引用的文献

1
Structural mechanism of disulphide bond-mediated redox switches.
J Biochem. 2012 Jun;151(6):579-88. doi: 10.1093/jb/mvs046. Epub 2012 May 2.
2
Endogenous protein S-Nitrosylation in E. coli: regulation by OxyR.
Science. 2012 Apr 27;336(6080):470-3. doi: 10.1126/science.1215643.
3
REFMAC5 for the refinement of macromolecular crystal structures.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67. doi: 10.1107/S0907444911001314. Epub 2011 Mar 18.
5
Thiol-based redox switches and gene regulation.
Antioxid Redox Signal. 2011 Mar 15;14(6):1049-63. doi: 10.1089/ars.2010.3400. Epub 2010 Oct 28.
6
The structure of a reduced form of OxyR from Neisseria meningitidis.
BMC Struct Biol. 2010 May 17;10:10. doi: 10.1186/1472-6807-10-10.
8
The OxyR homologue in Tannerella forsythia regulates expression of oxidative stress responses and biofilm formation.
Microbiology (Reading). 2009 Jun;155(Pt 6):1912-1922. doi: 10.1099/mic.0.027920-0. Epub 2009 Apr 23.
9
Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins.
Microbiology (Reading). 2008 Dec;154(Pt 12):3609-3623. doi: 10.1099/mic.0.2008/022772-0.
10
The SWISS-MODEL Repository and associated resources.
Nucleic Acids Res. 2009 Jan;37(Database issue):D387-92. doi: 10.1093/nar/gkn750. Epub 2008 Oct 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验