Biology Department, City College of New York, New York, New York, 10031; The Graduate Center, City University of New York, New York, New York, 10016.
Evolution. 2014 Jan;68(1):284-94. doi: 10.1111/evo.12241. Epub 2013 Sep 16.
Prior specification is an essential component of parameter estimation and model comparison in Approximate Bayesian computation (ABC). Oaks et al. present a simulation-based power analysis of msBayes and conclude that msBayes has low power to detect genuinely random divergence times across taxa, and suggest the cause is Lindley's paradox. Although the predictions are similar, we show that their findings are more fundamentally explained by insufficient prior sampling that arises with poorly chosen wide priors that critically undersample nonsimultaneous divergence histories of high likelihood. In a reanalysis of their data on Philippine Island vertebrates, we show how this problem can be circumvented by expanding upon a previously developed procedure that accommodates uncertainty in prior selection using Bayesian model averaging. When these procedures are used, msBayes supports recent divergences without support for synchronous divergence in the Oaks et al. data and we further present a simulation analysis that demonstrates that msBayes can have high power to detect asynchronous divergence under narrower priors for divergence time. Our findings highlight the need for exploration of plausible parameter space and prior sampling efficiency for ABC samplers in high dimensions. We discus potential improvements to msBayes and conclude that when used appropriately with model averaging, msBayes remains an effective and powerful tool.
事前指定是近似贝叶斯计算 (ABC) 中参数估计和模型比较的一个重要组成部分。Oaks 等人提出了一种基于模拟的 msBayes 功效分析,并得出结论,msBayes 检测跨分类单元真正随机分歧时间的功效较低,并认为原因是 Lindley 的悖论。尽管预测结果相似,但我们表明,他们的发现更根本地解释为由于选择不当的宽先验而导致的先验采样不足,这严重低估了高可能性的非同时分歧历史。在对菲律宾岛脊椎动物数据的重新分析中,我们展示了如何通过扩展以前开发的程序来解决这个问题,该程序使用贝叶斯模型平均来处理先验选择中的不确定性。当使用这些程序时,msBayes 支持最近的分歧,而不支持 Oaks 等人数据中的同步分歧,我们进一步进行了模拟分析,表明在更窄的分歧时间先验下,msBayes 可以具有高功效来检测异步分歧。我们的研究结果强调了需要探索 ABC 采样器在高维中合理的参数空间和先验采样效率的必要性。我们讨论了对 msBayes 的潜在改进,并得出结论,当与模型平均一起适当使用时,msBayes 仍然是一种有效且强大的工具。