Suppr超能文献

使用无细胞测定法剖析保守寡聚高尔基体连接复合物的功能。

Dissecting functions of the conserved oligomeric Golgi tethering complex using a cell-free assay.

机构信息

Department of Biology, University of York, York, UK.

出版信息

Traffic. 2014 Jan;15(1):12-21. doi: 10.1111/tra.12128. Epub 2013 Oct 31.

Abstract

Vesicle transport sorts proteins between compartments and is thereby responsible for generating the non-uniform protein distribution along the eukaryotic secretory and endocytic pathways. The mechanistic details of specific vesicle targeting are not yet well characterized at the molecular level. We have developed a cell-free assay that reconstitutes vesicle targeting utilizing the recycling of resident enzymes within the Golgi apparatus. The assay has physiological properties, and could be used to show that the two lobes of the conserved oligomeric Golgi tethering complex play antagonistic roles in trans-Golgi vesicle targeting. Moreover, we can show that the assay is sensitive to several different congenital defects that disrupt Golgi function and therefore cause glycosylation disorders. Consequently, this assay will allow mechanistic insight into the targeting step of vesicle transport at the Golgi, and could also be useful for characterizing some novel cases of congenital glycosylation disorders.

摘要

囊泡运输在隔室之间分拣蛋白质,从而负责在真核分泌和内吞途径中产生非均匀的蛋白质分布。特定囊泡靶向的机制细节在分子水平上尚未很好地表征。我们开发了一种无细胞测定法,该测定法利用高尔基体中驻留酶的再循环来重建囊泡靶向。该测定法具有生理特性,可用于表明保守寡聚高尔基体连接复合物的两个叶在跨高尔基囊泡靶向中发挥拮抗作用。此外,我们可以表明,该测定法对几种不同的先天性缺陷敏感,这些缺陷会破坏高尔基体的功能,从而导致糖基化紊乱。因此,该测定法将允许深入了解高尔基体中囊泡运输的靶向步骤,并且对于表征某些新型先天性糖基化疾病也可能有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bee3/3995013/45129caf76ac/tra0015-0012-f1.jpg

相似文献

1
Dissecting functions of the conserved oligomeric Golgi tethering complex using a cell-free assay.
Traffic. 2014 Jan;15(1):12-21. doi: 10.1111/tra.12128. Epub 2013 Oct 31.
3
Conserved Oligomeric Golgi and Neuronal Vesicular Trafficking.
Handb Exp Pharmacol. 2018;245:227-247. doi: 10.1007/164_2017_65.
4
The Golgi puppet master: COG complex at center stage of membrane trafficking interactions.
Histochem Cell Biol. 2013 Sep;140(3):271-83. doi: 10.1007/s00418-013-1117-6. Epub 2013 Jul 10.
5
Golgi inCOGnito: From vesicle tethering to human disease.
Biochim Biophys Acta Gen Subj. 2020 Nov;1864(11):129694. doi: 10.1016/j.bbagen.2020.129694. Epub 2020 Jul 27.
6
Detailed Analysis of the Interaction of Yeast COG Complex.
Cell Struct Funct. 2018 Jul 19;43(2):119-127. doi: 10.1247/csf.18014. Epub 2018 Jun 14.
9
Role of the conserved oligomeric Golgi (COG) complex in protein glycosylation.
Carbohydr Res. 2008 Aug 11;343(12):2024-31. doi: 10.1016/j.carres.2008.01.034. Epub 2008 Feb 2.

引用本文的文献

1
Comprehensive Proteomic Characterization of the Intra-Golgi Trafficking Intermediates.
bioRxiv. 2024 Nov 12:2024.10.25.620336. doi: 10.1101/2024.10.25.620336.
2
Syntaxin-5's flexibility in SNARE pairing supports Golgi functions.
Traffic. 2023 Aug;24(8):355-379. doi: 10.1111/tra.12903. Epub 2023 Jun 21.
4
Maintaining order: COG complex controls Golgi trafficking, processing, and sorting.
FEBS Lett. 2019 Sep;593(17):2466-2487. doi: 10.1002/1873-3468.13570. Epub 2019 Aug 16.
5
Cell-free Fluorescent Intra-Golgi Retrograde Vesicle Trafficking Assay.
Bio Protoc. 2017 Nov 20;7(22). doi: 10.21769/BioProtoc.2616.
6
Epithelial-to-mesenchymal transition drives a pro-metastatic Golgi compaction process through scaffolding protein PAQR11.
J Clin Invest. 2017 Jan 3;127(1):117-131. doi: 10.1172/JCI88736. Epub 2016 Nov 21.
7
The Secret Life of Tethers: The Role of Tethering Factors in SNARE Complex Regulation.
Front Cell Dev Biol. 2016 May 9;4:42. doi: 10.3389/fcell.2016.00042. eCollection 2016.
8
COG Complex Complexities: Detailed Characterization of a Complete Set of HEK293T Cells Lacking Individual COG Subunits.
Front Cell Dev Biol. 2016 Mar 30;4:23. doi: 10.3389/fcell.2016.00023. eCollection 2016.
9
Bridging the Gap between Glycosylation and Vesicle Traffic.
Front Cell Dev Biol. 2016 Mar 8;4:15. doi: 10.3389/fcell.2016.00015. eCollection 2016.
10
The HOPS/class C Vps complex tethers membranes by binding to one Rab GTPase in each apposed membrane.
Mol Biol Cell. 2015 Jul 15;26(14):2655-63. doi: 10.1091/mbc.E14-04-0922. Epub 2015 May 20.

本文引用的文献

1
COG complexes form spatial landmarks for distinct SNARE complexes.
Nat Commun. 2013;4:1553. doi: 10.1038/ncomms2535.
3
Golgi glycosylation and human inherited diseases.
Cold Spring Harb Perspect Biol. 2011 Sep 1;3(9):a005371. doi: 10.1101/cshperspect.a005371.
4
Conserved oligomeric Golgi complex specifically regulates the maintenance of Golgi glycosylation machinery.
Glycobiology. 2011 Dec;21(12):1554-69. doi: 10.1093/glycob/cwr028. Epub 2011 Mar 18.
5
Congenital disorders of glycosylation (CDG): it's (nearly) all in it!
J Inherit Metab Dis. 2011 Aug;34(4):853-8. doi: 10.1007/s10545-011-9299-3. Epub 2011 Mar 8.
8
Reconstitution of Rab- and SNARE-dependent membrane fusion by synthetic endosomes.
Nature. 2009 Jun 25;459(7250):1091-7. doi: 10.1038/nature08107. Epub 2009 May 20.
9
SNARE function is not involved in early endosome docking.
Mol Biol Cell. 2008 Dec;19(12):5327-37. doi: 10.1091/mbc.e08-05-0457. Epub 2008 Oct 8.
10
Impaired glycosylation and cutis laxa caused by mutations in the vesicular H+-ATPase subunit ATP6V0A2.
Nat Genet. 2008 Jan;40(1):32-4. doi: 10.1038/ng.2007.45. Epub 2007 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验