Suppr超能文献

不仅仅是糖:保守的寡聚高尔基体复合物缺陷导致糖基化非依赖性的细胞缺陷。

More than just sugars: Conserved oligomeric Golgi complex deficiency causes glycosylation-independent cellular defects.

机构信息

Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas.

出版信息

Traffic. 2018 Jun;19(6):463-480. doi: 10.1111/tra.12564. Epub 2018 Apr 24.

Abstract

The conserved oligomeric Golgi (COG) complex controls membrane trafficking and ensures Golgi homeostasis by orchestrating retrograde vesicle trafficking within the Golgi. Human COG defects lead to severe multisystemic diseases known as COG-congenital disorders of glycosylation (COG-CDG). To gain better understanding of COG-CDGs, we compared COG knockout cells with cells deficient to 2 key enzymes, Alpha-1,3-mannosyl-glycoprotein 2-beta-N-acetylglucosaminyltransferase and uridine diphosphate-glucose 4-epimerase (GALE), which contribute to proper N- and O-glycosylation. While all knockout cells share similar defects in glycosylation, these defects only account for a small fraction of observed COG knockout phenotypes. Glycosylation deficiencies were not associated with the fragmented Golgi, abnormal endolysosomes, defective sorting and secretion or delayed retrograde trafficking, indicating that these phenotypes are probably not due to hypoglycosylation, but to other specific interactions or roles of the COG complex. Importantly, these COG deficiency specific phenotypes were also apparent in COG7-CDG patient fibroblasts, proving the human disease relevance of our CRISPR knockout findings. The knowledge gained from this study has important implications, both for understanding the physiological role of COG complex in Golgi homeostasis in eukaryotic cells, and for better understanding human diseases associated with COG/Golgi impairment.

摘要

保守寡聚高尔基体 (COG) 复合物通过协调高尔基体内部逆行囊泡运输来控制膜运输并确保高尔基体的内稳态。人类 COG 缺陷导致严重的多系统疾病,称为 COG-先天性糖基化障碍 (COG-CDG)。为了更好地了解 COG-CDG,我们将 COG 敲除细胞与缺乏两种关键酶的细胞进行了比较,这两种关键酶是 Alpha-1,3-甘露糖基糖蛋白 2-β-N-乙酰葡萄糖胺基转移酶和尿苷二磷酸葡萄糖 4-差向异构酶 (GALE),它们有助于正确的 N-和 O-糖基化。虽然所有敲除细胞在糖基化方面都存在相似的缺陷,但这些缺陷仅占观察到的 COG 敲除表型的一小部分。糖基化缺陷与碎片化的高尔基体、异常的内溶酶体、有缺陷的分拣和分泌或延迟的逆行运输无关,表明这些表型可能不是由于低聚糖,而是由于 COG 复合物的其他特定相互作用或作用。重要的是,COG7-CDG 患者成纤维细胞中也出现了这些 COG 缺乏特异性表型,证明了我们的 CRISPR 敲除发现与人类疾病的相关性。这项研究的结果具有重要意义,既有助于理解 COG 复合物在真核细胞高尔基体内稳态中的生理作用,也有助于更好地理解与 COG/高尔基体功能障碍相关的人类疾病。

相似文献

2
Golgi inCOGnito: From vesicle tethering to human disease.高尔基暗箱:从囊泡锚定到人类疾病。
Biochim Biophys Acta Gen Subj. 2020 Nov;1864(11):129694. doi: 10.1016/j.bbagen.2020.129694. Epub 2020 Jul 27.

引用本文的文献

本文引用的文献

1
Congenital disorders of glycosylation (CDG): Quo vadis?先天性糖基化障碍(CDG):何去何从?
Eur J Med Genet. 2018 Nov;61(11):643-663. doi: 10.1016/j.ejmg.2017.10.012. Epub 2017 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验