Andreadis Ioannis I, Giannakakis Giorgos A, Papageorgiou Charalabos, Nikita Konstantina S
Biomedical Simulations and Imaging Laboratory, National Technical University of Athens, Greece.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6292-5. doi: 10.1109/IEMBS.2009.5332798.
Dyslexia constitutes a specific reading disability, a condition characterized by severe difficulty in the mastery of reading despite normal intelligence or adequate education. Electroencephalogram (EEG) signal may be able to play an important role in the diagnosis of dyslexia. The Approximate Entropy (ApEn) is a recently formulated statistical parameter used to quantify the regularity of a time series data of physiological signals. In this paper, we initially estimated the ApEn values in signals recorded from controls subjects and dyslectic children. These values were firstly used for the statistical analysis of the two groups and secondly as feature input in a classification scheme. We also used the cross-ApEn methodology to get a measure of the asynchrony of the signals recorded from different electrodes. This preliminary study provides promising results towards correct identification of dyslexic cases, analyzing the corresponding EEG signals.
阅读障碍是一种特定的阅读障碍,其特征是尽管智力正常或接受了足够的教育,但在掌握阅读方面仍存在严重困难。脑电图(EEG)信号可能在阅读障碍的诊断中发挥重要作用。近似熵(ApEn)是最近制定的一个统计参数,用于量化生理信号时间序列数据的规律性。在本文中,我们首先估计了对照组受试者和阅读障碍儿童记录信号中的ApEn值。这些值首先用于两组的统计分析,其次作为分类方案中的特征输入。我们还使用了交叉近似熵方法来测量从不同电极记录的信号的异步性。这项初步研究为通过分析相应的脑电图信号正确识别阅读障碍病例提供了有希望的结果。