Suppr超能文献

RNA测序定量工具的基准测试

Benchmarking RNA-Seq quantification tools.

作者信息

Chandramohan Raghu, Wu Po-Yen, Phan John H, Wang May D

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:647-50. doi: 10.1109/EMBC.2013.6609583.

Abstract

RNA-Seq, a deep sequencing technique, promises to be a potential successor to microarrays for studying the transcriptome. One of many aspects of transcriptomics that are of interest to researchers is gene expression estimation. With rapid development in RNA-Seq, there are numerous tools available to estimate gene expression, each producing different results. However, we do not know which of these tools produces the most accurate gene expression estimates. In this study we have addressed this issue using Cufflinks, IsoEM, HTSeq, and RSEM to quantify RNA-Seq expression profiles. Comparing results of these quantification tools, we observe that RNA-Seq relative expression estimates correlate with RT-qPCR measurements in the range of 0.85 to 0.89, with HTSeq exhibiting the highest correlation. But, in terms of root-mean-square deviation of RNA-Seq relative expression estimates from RT-qPCR measurements, we find HTSeq to produce the greatest deviation. Therefore, we conclude that, though Cufflinks, RSEM, and IsoEM might not correlate as well as HTSeq with RT-qPCR measurements, they may produce expression values with higher accuracy.

摘要

RNA测序(RNA-Seq)是一种深度测序技术,有望成为研究转录组的微阵列的潜在继任者。基因表达估计是转录组学中众多令研究人员感兴趣的方面之一。随着RNA-Seq的快速发展,有许多工具可用于估计基因表达,每个工具产生的结果都不同。然而,我们不知道这些工具中哪一个能产生最准确的基因表达估计值。在本研究中,我们使用Cufflinks、IsoEM、HTSeq和RSEM来量化RNA-Seq表达谱,从而解决了这个问题。比较这些量化工具的结果,我们观察到RNA-Seq相对表达估计值与RT-qPCR测量值的相关性在0.85至0.89之间,其中HTSeq表现出最高的相关性。但是,就RNA-Seq相对表达估计值与RT-qPCR测量值的均方根偏差而言,我们发现HTSeq产生的偏差最大。因此,我们得出结论,尽管Cufflinks、RSEM和IsoEM与RT-qPCR测量值的相关性可能不如HTSeq,但它们可能产生更高准确性的表达值。

相似文献

1
Benchmarking RNA-Seq quantification tools.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:647-50. doi: 10.1109/EMBC.2013.6609583.
2
RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome.
BMC Bioinformatics. 2011 Aug 4;12:323. doi: 10.1186/1471-2105-12-323.
4
Comparative evaluation of full-length isoform quantification from RNA-Seq.
BMC Bioinformatics. 2021 May 25;22(1):266. doi: 10.1186/s12859-021-04198-1.
5
Using Synthetic Mouse Spike-In Transcripts to Evaluate RNA-Seq Analysis Tools.
PLoS One. 2016 Apr 21;11(4):e0153782. doi: 10.1371/journal.pone.0153782. eCollection 2016.
6
Benchmark of long non-coding RNA quantification for RNA sequencing of cancer samples.
Gigascience. 2019 Dec 1;8(12). doi: 10.1093/gigascience/giz145.
7
RNA-Skim: a rapid method for RNA-Seq quantification at transcript level.
Bioinformatics. 2014 Jun 15;30(12):i283-i292. doi: 10.1093/bioinformatics/btu288.
8
Missing data and technical variability in single-cell RNA-sequencing experiments.
Biostatistics. 2018 Oct 1;19(4):562-578. doi: 10.1093/biostatistics/kxx053.
9
Assessing the impact of human genome annotation choice on RNA-seq expression estimates.
BMC Bioinformatics. 2013;14 Suppl 11(Suppl 11):S8. doi: 10.1186/1471-2105-14-S11-S8. Epub 2013 Nov 4.

引用本文的文献

1
Computational methods and data resources for predicting tumor neoantigens.
Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf302.
2
Characterization of Isolated Human Astrocytes from Aging Brain.
Int J Mol Sci. 2025 Apr 5;26(7):3416. doi: 10.3390/ijms26073416.
4
Alternative splicing analysis benchmark with DICAST.
NAR Genom Bioinform. 2023 May 30;5(2):lqad044. doi: 10.1093/nargab/lqad044. eCollection 2023 Jun.
5
A study of differential microRNA expression profile in migraine: the microMIG exploratory study.
J Headache Pain. 2023 Feb 17;24(1):11. doi: 10.1186/s10194-023-01542-z.
6
Mitochondrial DNA variation in Alzheimer's disease reveals a unique microprotein called SHMOOSE.
Mol Psychiatry. 2023 Apr;28(4):1813-1826. doi: 10.1038/s41380-022-01769-3. Epub 2022 Sep 21.
7
Comparative evaluation of full-length isoform quantification from RNA-Seq.
BMC Bioinformatics. 2021 May 25;22(1):266. doi: 10.1186/s12859-021-04198-1.
8
NormQ: RNASeq normalization based on RT-qPCR derived size factors.
Comput Struct Biotechnol J. 2020 May 14;18:1173-1181. doi: 10.1016/j.csbj.2020.05.010. eCollection 2020.
10
RNA-Seq Analysis of an Antisense Sequence Optimized for Exon Skipping in Duchenne Patients Reveals No Off-Target Effect.
Mol Ther Nucleic Acids. 2018 Mar 2;10:277-291. doi: 10.1016/j.omtn.2017.12.008. Epub 2017 Dec 21.

本文引用的文献

1
RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome.
BMC Bioinformatics. 2011 Aug 4;12:323. doi: 10.1186/1471-2105-12-323.
2
Computational methods for transcriptome annotation and quantification using RNA-seq.
Nat Methods. 2011 Jun;8(6):469-77. doi: 10.1038/nmeth.1613. Epub 2011 May 27.
3
Estimation of alternative splicing isoform frequencies from RNA-Seq data.
Algorithms Mol Biol. 2011 Apr 19;6(1):9. doi: 10.1186/1748-7188-6-9.
4
Accurate quantification of transcriptome from RNA-Seq data by effective length normalization.
Nucleic Acids Res. 2011 Jan;39(2):e9. doi: 10.1093/nar/gkq1015. Epub 2010 Nov 8.
6
TopHat: discovering splice junctions with RNA-Seq.
Bioinformatics. 2009 May 1;25(9):1105-11. doi: 10.1093/bioinformatics/btp120. Epub 2009 Mar 16.
7
Ultrafast and memory-efficient alignment of short DNA sequences to the human genome.
Genome Biol. 2009;10(3):R25. doi: 10.1186/gb-2009-10-3-r25. Epub 2009 Mar 4.
8
Alternative isoform regulation in human tissue transcriptomes.
Nature. 2008 Nov 27;456(7221):470-6. doi: 10.1038/nature07509.
9
RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays.
Genome Res. 2008 Sep;18(9):1509-17. doi: 10.1101/gr.079558.108. Epub 2008 Jun 11.
10
Mapping and quantifying mammalian transcriptomes by RNA-Seq.
Nat Methods. 2008 Jul;5(7):621-8. doi: 10.1038/nmeth.1226. Epub 2008 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验