Chandramohan Raghu, Wu Po-Yen, Phan John H, Wang May D
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:647-50. doi: 10.1109/EMBC.2013.6609583.
RNA-Seq, a deep sequencing technique, promises to be a potential successor to microarrays for studying the transcriptome. One of many aspects of transcriptomics that are of interest to researchers is gene expression estimation. With rapid development in RNA-Seq, there are numerous tools available to estimate gene expression, each producing different results. However, we do not know which of these tools produces the most accurate gene expression estimates. In this study we have addressed this issue using Cufflinks, IsoEM, HTSeq, and RSEM to quantify RNA-Seq expression profiles. Comparing results of these quantification tools, we observe that RNA-Seq relative expression estimates correlate with RT-qPCR measurements in the range of 0.85 to 0.89, with HTSeq exhibiting the highest correlation. But, in terms of root-mean-square deviation of RNA-Seq relative expression estimates from RT-qPCR measurements, we find HTSeq to produce the greatest deviation. Therefore, we conclude that, though Cufflinks, RSEM, and IsoEM might not correlate as well as HTSeq with RT-qPCR measurements, they may produce expression values with higher accuracy.
RNA测序(RNA-Seq)是一种深度测序技术,有望成为研究转录组的微阵列的潜在继任者。基因表达估计是转录组学中众多令研究人员感兴趣的方面之一。随着RNA-Seq的快速发展,有许多工具可用于估计基因表达,每个工具产生的结果都不同。然而,我们不知道这些工具中哪一个能产生最准确的基因表达估计值。在本研究中,我们使用Cufflinks、IsoEM、HTSeq和RSEM来量化RNA-Seq表达谱,从而解决了这个问题。比较这些量化工具的结果,我们观察到RNA-Seq相对表达估计值与RT-qPCR测量值的相关性在0.85至0.89之间,其中HTSeq表现出最高的相关性。但是,就RNA-Seq相对表达估计值与RT-qPCR测量值的均方根偏差而言,我们发现HTSeq产生的偏差最大。因此,我们得出结论,尽管Cufflinks、RSEM和IsoEM与RT-qPCR测量值的相关性可能不如HTSeq,但它们可能产生更高准确性的表达值。