文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

RSEM:有或无参考基因组的 RNA-Seq 数据的准确转录本定量。

RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome.

机构信息

Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

BMC Bioinformatics. 2011 Aug 4;12:323. doi: 10.1186/1471-2105-12-323.


DOI:10.1186/1471-2105-12-323
PMID:21816040
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3163565/
Abstract

BACKGROUND: RNA-Seq is revolutionizing the way transcript abundances are measured. A key challenge in transcript quantification from RNA-Seq data is the handling of reads that map to multiple genes or isoforms. This issue is particularly important for quantification with de novo transcriptome assemblies in the absence of sequenced genomes, as it is difficult to determine which transcripts are isoforms of the same gene. A second significant issue is the design of RNA-Seq experiments, in terms of the number of reads, read length, and whether reads come from one or both ends of cDNA fragments. RESULTS: We present RSEM, an user-friendly software package for quantifying gene and isoform abundances from single-end or paired-end RNA-Seq data. RSEM outputs abundance estimates, 95% credibility intervals, and visualization files and can also simulate RNA-Seq data. In contrast to other existing tools, the software does not require a reference genome. Thus, in combination with a de novo transcriptome assembler, RSEM enables accurate transcript quantification for species without sequenced genomes. On simulated and real data sets, RSEM has superior or comparable performance to quantification methods that rely on a reference genome. Taking advantage of RSEM's ability to effectively use ambiguously-mapping reads, we show that accurate gene-level abundance estimates are best obtained with large numbers of short single-end reads. On the other hand, estimates of the relative frequencies of isoforms within single genes may be improved through the use of paired-end reads, depending on the number of possible splice forms for each gene. CONCLUSIONS: RSEM is an accurate and user-friendly software tool for quantifying transcript abundances from RNA-Seq data. As it does not rely on the existence of a reference genome, it is particularly useful for quantification with de novo transcriptome assemblies. In addition, RSEM has enabled valuable guidance for cost-efficient design of quantification experiments with RNA-Seq, which is currently relatively expensive.

摘要

背景:RNA-Seq 正在彻底改变转录物丰度的测量方式。从 RNA-Seq 数据中定量转录物的一个关键挑战是处理映射到多个基因或异构体的读取。在没有测序基因组的情况下,从头转录组组装中进行定量时,这个问题尤其重要,因为很难确定哪些转录本是同一基因的异构体。第二个重要问题是 RNA-Seq 实验的设计,包括读取的数量、读取长度,以及读取是否来自 cDNA 片段的一端或两端。

结果:我们提出了 RSEM,这是一个用户友好的软件包,用于从单端或双端 RNA-Seq 数据中定量基因和异构体的丰度。RSEM 输出丰度估计值、95%可信度区间和可视化文件,还可以模拟 RNA-Seq 数据。与其他现有工具不同,该软件不需要参考基因组。因此,与从头转录组组装器结合使用,RSEM 能够为没有测序基因组的物种进行准确的转录物定量。在模拟和真实数据集上,RSEM 的性能优于或可与依赖参考基因组的定量方法相媲美。利用 RSEM 有效利用模糊映射读取的能力,我们表明,大量短的单端读取可获得最佳的基因水平丰度估计值。另一方面,通过使用双端读取,可以改善单个基因内异构体相对频率的估计值,具体取决于每个基因的可能剪接形式的数量。

结论:RSEM 是一种准确且用户友好的软件工具,用于从 RNA-Seq 数据中定量转录物丰度。由于它不依赖于参考基因组的存在,因此特别适用于从头转录组组装的定量。此外,RSEM 为具有 RNA-Seq 的定量实验的经济高效设计提供了有价值的指导,目前 RNA-Seq 相对昂贵。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05d6/3163565/1c9084da5544/1471-2105-12-323-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05d6/3163565/84229ad9f77f/1471-2105-12-323-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05d6/3163565/f399dfc6a0b6/1471-2105-12-323-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05d6/3163565/6bbbe153088b/1471-2105-12-323-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05d6/3163565/1c9084da5544/1471-2105-12-323-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05d6/3163565/84229ad9f77f/1471-2105-12-323-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05d6/3163565/f399dfc6a0b6/1471-2105-12-323-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05d6/3163565/6bbbe153088b/1471-2105-12-323-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05d6/3163565/1c9084da5544/1471-2105-12-323-4.jpg

相似文献

[1]
RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome.

BMC Bioinformatics. 2011-8-4

[2]
Integrative analysis with ChIP-seq advances the limits of transcript quantification from RNA-seq.

Genome Res. 2016-8

[3]
TIGAR2: sensitive and accurate estimation of transcript isoform expression with longer RNA-Seq reads.

BMC Genomics. 2014

[4]
EMSAR: estimation of transcript abundance from RNA-seq data by mappability-based segmentation and reclustering.

BMC Bioinformatics. 2015-9-3

[5]
Evaluation of de novo transcriptome assemblies from RNA-Seq data.

Genome Biol. 2014-12-21

[6]
Zea mays RNA-seq estimated transcript abundances are strongly affected by read mapping bias.

BMC Genomics. 2021-4-20

[7]
Comparative evaluation of full-length isoform quantification from RNA-Seq.

BMC Bioinformatics. 2021-5-25

[8]
ClusTrast: a short read de novo transcript isoform assembler guided by clustered contigs.

BMC Bioinformatics. 2024-2-1

[9]
ESPRESSO: Robust discovery and quantification of transcript isoforms from error-prone long-read RNA-seq data.

Sci Adv. 2023-1-20

[10]
SPARTA: Simple Program for Automated reference-based bacterial RNA-seq Transcriptome Analysis.

BMC Bioinformatics. 2016-2-4

引用本文的文献

[1]
LRP2 Expression in Melanoma Is Associated With a Transitory Cell State, Increased T Cell Infiltration, and Is Upregulated by IFNy Signaling.

Pigment Cell Melanoma Res. 2025-9

[2]
Early downregulation of hair cell (HC)-specific genes in the vestibular sensory epithelium during chronic ototoxicity.

J Biomed Sci. 2025-9-4

[3]
Genetic suppression features ABHD18 as a Barth syndrome therapeutic target.

Nature. 2025-9-3

[4]
Combined inhibition of SHP2 overcomes adaptive resistance to type 1 BRAF inhibitors in BRAF V600E-driven high-grade glioma.

Neurooncol Adv. 2025-8-2

[5]
Development of an in vitro method to assess the immunogenicity of biologics in the prevention of infectious diseases.

Immunol Res. 2025-9-3

[6]
Food hydrocolloids κ-carrageenan and xanthan gum in processed red meat modify gut health in rats.

Curr Res Food Sci. 2025-8-6

[7]
Differential lipid metabolism in beef cattle: A comparative study of high and low residual feed intake bulls.

Anim Nutr. 2025-7-12

[8]
Gene expression dynamics before and after zygotic gene activation in early embryogenesis.

iScience. 2025-8-7

[9]
Control of Chloroplast Integrity by the Jasmonate Signaling Pathway is Linked to Growth-Defense Balance.

bioRxiv. 2025-8-20

[10]
Quantification method affects replicability of eQTL analysis, colocalization, and TWAS.

bioRxiv. 2025-8-24

本文引用的文献

[1]
Identification of novel transcripts in annotated genomes using RNA-Seq.

Bioinformatics. 2011-6-21

[2]
Full-length transcriptome assembly from RNA-Seq data without a reference genome.

Nat Biotechnol. 2011-5-15

[3]
Improving RNA-Seq expression estimates by correcting for fragment bias.

Genome Biol. 2011-3-16

[4]
Accurate estimation of expression levels of homologous genes in RNA-seq experiments.

J Comput Biol. 2011-3

[5]
Inference of isoforms from short sequence reads.

J Comput Biol. 2011-3

[6]
Using non-uniform read distribution models to improve isoform expression inference in RNA-Seq.

Bioinformatics. 2010-12-17

[7]
Isoform abundance inference provides a more accurate estimation of gene expression levels in RNA-seq.

J Bioinform Comput Biol. 2010-12

[8]
Analysis and design of RNA sequencing experiments for identifying isoform regulation.

Nat Methods. 2010-11-7

[9]
Ensembl 2011.

Nucleic Acids Res. 2011-1

[10]
Differential expression analysis for sequence count data.

Genome Biol. 2010-10-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索