Chen Yun, Yang Hui
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:2595-8. doi: 10.1109/EMBC.2013.6610071.
Vectorcardiogram (VCG) signals contain a wealth of dynamic information pertinent to space-time cardiac electrical activities. However, few, if any, previous investigations have studied disease-altered nonlinear dynamics in the spatiotemporal VCG signals. Most previous nonlinear dynamic methods considered the time-delay reconstructed state space from a single ECG trace. This paper presents a novel multiscale recurrence approach to not only explore VCG recurrence dynamics but also resolve the issue of recurrence computation for the large-scale datasets. As opposed to the traditional single-scale recurrence analysis, we characterize and quantify the recurrence behaviours in multiple wavelet scales. In addition, wavelet dyadic subsampling enables the large-scale recurrence analysis, but it is used to be highly expensive for a long-term time series. The classification experiments show that multiscale recurrence analysis detects the myocardial infarctions from 3-lead VCG with an average sensitivity of 96.8% and specificity of 92.8%, which show superior performance (i.e., 5.6% improvements) to the single-scale recurrence analysis.
向量心电图(VCG)信号包含与时空心脏电活动相关的丰富动态信息。然而,以往几乎没有研究过时空VCG信号中疾病改变的非线性动力学。以往大多数非线性动力学方法都是从单一心电图轨迹考虑时延重构状态空间。本文提出了一种新颖的多尺度递归方法,不仅用于探索VCG递归动力学,还用于解决大规模数据集的递归计算问题。与传统的单尺度递归分析不同,我们在多个小波尺度上表征和量化递归行为。此外,小波二进下采样实现了大规模递归分析,但对于长期时间序列来说,其计算成本一直很高。分类实验表明,多尺度递归分析从三导联VCG中检测心肌梗死的平均灵敏度为96.8%,特异性为92.8%,与单尺度递归分析相比表现出卓越性能(即提高了5.6%)。