Suppr超能文献

多通道心脏信号中疾病改变的时空模式的异质复发分析。

Heterogeneous Recurrence Analysis of Disease-Altered Spatiotemporal Patterns in Multi-Channel Cardiac Signals.

出版信息

IEEE J Biomed Health Inform. 2020 Jun;24(6):1619-1631. doi: 10.1109/JBHI.2019.2952285. Epub 2019 Nov 8.

Abstract

Heart diseases alter the rhythmic behaviors of cardiac electrical activity. Recent advances in sensing technology bring the ease to acquire space-time electrical activity of the heart such as vectorcardiogram (VCG) signals. Recurrence analysis of successive heartbeats is conducive to detect the disease-altered cardiac activities. However, conventional recurrence analysis is more concerned about homogeneous recurrences, and overlook heterogeneous types of recurrence variations in VCG signals (i.e., in terms of state properties and transition dynamics). This paper presents a new framework of heterogeneous recurrence analysis for the characterization and modeling of disease-altered spatiotemporal patterns in multi-channel cardiac signals. Experimental results show that the proposed approach yields an accuracy of 96.9%, a sensitivity of 95.0%, and a specificity of 98.7% for the identification of myocardial infarctions. The proposed method of heterogeneous recurrence analysis shows strong potential to be further extended for the analysis of other physiological signals such as electroencephalogram (EEG) and electromyography (EMG) signals towards medical decision making.

摘要

心脏病会改变心脏电活动的节律行为。传感技术的最新进展使得获取心脏的时空电活动变得更加容易,例如心向量图(VCG)信号。对连续心跳的重发分析有助于检测到疾病改变的心脏活动。然而,传统的重发分析更关注同质性的重发,而忽略了 VCG 信号中异质类型的重发变化(即状态属性和转换动力学方面)。本文提出了一种新的异质重发分析框架,用于描述和建模多通道心脏信号中疾病改变的时空模式。实验结果表明,该方法对心肌梗死的识别准确率为 96.9%,灵敏度为 95.0%,特异性为 98.7%。这种异质重发分析方法具有很大的潜力,可以进一步扩展用于分析其他生理信号,如脑电图(EEG)和肌电图(EMG)信号,以支持医疗决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验