Chen Yun, Yang Hui
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:2599-602. doi: 10.1109/EMBC.2013.6610072.
Heart rate variability (HRV) analysis has emerged as an important research topic to evaluate autonomic cardiac function. However, traditional time and frequency-domain analysis characterizes and quantify only linear and stationary phenomena. In the present investigation, we made a comparative analysis of three alternative approaches (i.e., wavelet multifractal analysis, Lyapunov exponents and multiscale entropy analysis) for quantifying nonlinear dynamics in heart rate time series. Note that these extracted nonlinear features provide information about nonlinear scaling behaviors and the complexity of cardiac systems. To evaluate the performance, we used 24-hour HRV recordings from 54 healthy subjects and 29 heart failure patients, available in PhysioNet. Three nonlinear methods are evaluated not only individually but also in combination using three classification algorithms, i.e., linear discriminate analysis, quadratic discriminate analysis and k-nearest neighbors. Experimental results show that three nonlinear methods capture nonlinear dynamics from different perspectives and the combined feature set achieves the best performance, i.e., sensitivity 97.7% and specificity 91.5%. Collectively, nonlinear HRV features are shown to have the promise to identify the disorders in autonomic cardiovascular function.
心率变异性(HRV)分析已成为评估自主心脏功能的一个重要研究课题。然而,传统的时域和频域分析仅对线性和稳态现象进行表征和量化。在本研究中,我们对三种用于量化心率时间序列非线性动力学的替代方法(即小波多重分形分析、李雅普诺夫指数和多尺度熵分析)进行了比较分析。请注意,这些提取的非线性特征提供了有关心脏系统非线性标度行为和复杂性的信息。为了评估性能,我们使用了PhysioNet中提供的54名健康受试者和29名心力衰竭患者的24小时HRV记录。三种非线性方法不仅单独进行了评估,还使用三种分类算法(即线性判别分析、二次判别分析和k近邻)进行了组合评估。实验结果表明,三种非线性方法从不同角度捕捉非线性动力学,组合特征集实现了最佳性能,即灵敏度为97.7%,特异性为91.5%。总体而言,非线性HRV特征显示出识别自主心血管功能障碍的潜力。