Joutsijoki Henry
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:3646-9. doi: 10.1109/EMBC.2013.6610333.
Benthic macroinvertebrates play a key role when water quality assessments are made. Benthic macroinvertebrates are difficult to identify and their identification need special expertise. Furthermore, manual identification is slow and expensive process. This paper concerns benthic macroinverte-brate classification when Half-Against-Half (HAH) structure was applied to Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA) and Minimum Mahalanobis Distance Classifier (MMDC) classifiers. Especially, LDA, QDA and MMDC classifiers were for first time applied with HAH structure to benthic macroinvertebrate classification. We performed thorough experiments altogether with ten methods. In the case of HAH-SVM we managed to improve classification results from the earlier research by using a different approach to class division problem. We obtained 96.1% classification accuracy with Radial Basis Function (RBF) kernel. Moreover, new variants of LDA, QDA and MMDC classification methods achieved 89.5% and 91.6% classification accuracies which can be considered as a good result in such a difficult classification task.
在进行水质评估时,底栖大型无脊椎动物起着关键作用。底栖大型无脊椎动物难以识别,其识别需要专业知识。此外,人工识别过程缓慢且成本高昂。本文探讨了将对半(HAH)结构应用于支持向量机(SVM)、线性判别分析(LDA)、二次判别分析(QDA)和最小马氏距离分类器(MMDC)时的底栖大型无脊椎动物分类问题。特别是,LDA、QDA和MMDC分类器首次将HAH结构应用于底栖大型无脊椎动物分类。我们总共用十种方法进行了全面的实验。在HAH-SVM的情况下,我们通过采用不同的类别划分问题处理方法,成功改进了早期研究的分类结果。使用径向基函数(RBF)核,我们获得了96.1%的分类准确率。此外,LDA、QDA和MMDC分类方法的新变体分别达到了89.5%和91.6%的分类准确率,在如此困难的分类任务中,这可被视为一个不错的结果。