Suppr超能文献

一种用于基于脑电图的脑网络信息流分析的扩展多元自回归框架。

An extended multivariate autoregressive framework for EEG-based information flow analysis of a brain network.

作者信息

Hettiarachchi Imali T, Mohamed Shady, Nyhof Luke, Nahavandi Saeid

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:3945-8. doi: 10.1109/EMBC.2013.6610408.

Abstract

Recently effective connectivity studies have gained significant attention among the neuroscience community as Electroencephalography (EEG) data with a high time resolution can give us a wider understanding of the information flow within the brain. Among other tools used in effective connectivity analysis Granger Causality (GC) has found a prominent place. The GC analysis, based on strictly causal multivariate autoregressive (MVAR) models does not account for the instantaneous interactions among the sources. If instantaneous interactions are present, GC based on strictly causal MVAR will lead to erroneous conclusions on the underlying information flow. Thus, the work presented in this paper applies an extended MVAR (eMVAR) model that accounts for the zero lag interactions. We propose a constrained adaptive Kalman filter (CAKF) approach for the eMVAR model identification and demonstrate that this approach performs better than the short time windowing-based adaptive estimation when applied to information flow analysis.

摘要

最近,有效连接性研究在神经科学界受到了广泛关注,因为具有高时间分辨率的脑电图(EEG)数据能够让我们更全面地了解大脑内部的信息流。在有效连接性分析中使用的其他工具中,格兰杰因果关系(GC)占据了显著地位。基于严格因果多变量自回归(MVAR)模型的GC分析没有考虑源之间的瞬时相互作用。如果存在瞬时相互作用,基于严格因果MVAR的GC将导致对潜在信息流得出错误结论。因此,本文提出的工作应用了一种扩展的MVAR(eMVAR)模型,该模型考虑了零滞后相互作用。我们提出了一种用于eMVAR模型识别的约束自适应卡尔曼滤波器(CAKF)方法,并证明该方法在应用于信息流分析时比基于短时间窗的自适应估计表现更好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验