Brückner Hans-Peter, Spindeldreier Christian, Blume Holger
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:3953-6. doi: 10.1109/EMBC.2013.6610410.
A common approach for high accuracy sensor fusion based on 9D inertial measurement unit data is Kalman filtering. State of the art floating-point filter algorithms differ in their computational complexity nevertheless, real-time operation on a low-power microcontroller at high sampling rates is not possible. This work presents algorithmic modifications to reduce the computational demands of a two-step minimum order Kalman filter. Furthermore, the required bit-width of a fixed-point filter version is explored. For evaluation real-world data captured using an Xsens MTx inertial sensor is used. Changes in computational latency and orientation estimation accuracy due to the proposed algorithmic modifications and fixed-point number representation are evaluated in detail on a variety of processing platforms enabling on-board processing on wearable sensor platforms.
基于九轴惯性测量单元数据进行高精度传感器融合的一种常用方法是卡尔曼滤波。尽管当前最先进的浮点滤波算法在计算复杂度上存在差异,但要在低功耗微控制器上以高采样率进行实时操作是不可能的。这项工作提出了算法改进,以降低两步最小阶卡尔曼滤波器的计算需求。此外,还探索了定点滤波器版本所需的位宽。为了进行评估,使用了通过Xsens MTx惯性传感器采集的实际数据。在各种处理平台上详细评估了由于所提出的算法改进和定点数表示而导致的计算延迟和方向估计精度的变化,从而实现了可穿戴传感器平台上的板载处理。