Suppr超能文献

用于非接触式传感器的心呼吸信号提取和融合的自适应卡尔曼滤波方法。

An adaptive Kalman filter approach for cardiorespiratory signal extraction and fusion of non-contacting sensors.

机构信息

Philips Chair for Medical Information Technology, Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.

出版信息

BMC Med Inform Decis Mak. 2014 May 9;14:37. doi: 10.1186/1472-6947-14-37.

Abstract

BACKGROUND

Extracting cardiorespiratory signals from non-invasive and non-contacting sensor arrangements, i.e. magnetic induction sensors, is a challenging task. The respiratory and cardiac signals are mixed on top of a large and time-varying offset and are likely to be disturbed by measurement noise. Basic filtering techniques fail to extract relevant information for monitoring purposes.

METHODS

We present a real-time filtering system based on an adaptive Kalman filter approach that separates signal offsets, respiratory and heart signals from three different sensor channels. It continuously estimates respiration and heart rates, which are fed back into the system model to enhance performance. Sensor and system noise covariance matrices are automatically adapted to the aimed application, thus improving the signal separation capabilities. We apply the filtering to two different subjects with different heart rates and sensor properties and compare the results to the non-adaptive version of the same Kalman filter. Also, the performance, depending on the initialization of the filters, is analyzed using three different configurations ranging from best to worst case.

RESULTS

Extracted data are compared with reference heart rates derived from a standard pulse-photoplethysmographic sensor and respiration rates from a flowmeter. In the worst case for one of the subjects the adaptive filter obtains mean errors (standard deviations) of -0.2 min(-1) (0.3 min(-1)) and -0.7 bpm (1.7 bpm) (compared to -0.2 min(-1) (0.4 min(-1)) and 42.0 bpm (6.1 bpm) for the non-adaptive filter) for respiration and heart rate, respectively. In bad conditions the heart rate is only correctly measurable when the Kalman matrices are adapted to the target sensor signals. Also, the reduced mean error between the extracted offset and the raw sensor signal shows that adapting the Kalman filter continuously improves the ability to separate the desired signals from the raw sensor data. The average total computational time needed for the Kalman filters is under 25% of the total signal length rendering it possible to perform the filtering in real-time.

CONCLUSIONS

It is possible to measure in real-time heart and breathing rates using an adaptive Kalman filter approach. Adapting the Kalman filter matrices improves the estimation results and makes the filter universally deployable when measuring cardiorespiratory signals.

摘要

背景

从非侵入式和非接触式传感器设备(例如磁感应传感器)中提取心肺信号是一项具有挑战性的任务。呼吸和心脏信号叠加在一个大的时变偏移上,并且可能受到测量噪声的干扰。基本滤波技术无法提取用于监测目的的相关信息。

方法

我们提出了一种基于自适应卡尔曼滤波方法的实时滤波系统,该系统可从三个不同的传感器通道中分离信号偏移、呼吸和心跳信号。它连续估计呼吸和心率,并将其反馈到系统模型中以提高性能。传感器和系统噪声协方差矩阵会自动适应目标应用,从而提高信号分离能力。我们将该滤波应用于两个具有不同心率和传感器特性的不同受试者,并将结果与相同卡尔曼滤波器的非自适应版本进行比较。此外,还分析了依赖于滤波器初始化的性能,使用三种不同的配置(从最佳到最差)进行分析。

结果

提取的数据与从标准光电容积脉搏传感器获得的参考心率和从流量计获得的呼吸率进行比较。对于其中一个受试者,自适应滤波器在最坏情况下的平均误差(标准差)分别为-0.2 min(-1)(0.3 min(-1))和-0.7 bpm(1.7 bpm)(相比之下,非自适应滤波器为-0.2 min(-1)(0.4 min(-1))和 42.0 bpm(6.1 bpm))用于呼吸和心率。在较差的条件下,只有当卡尔曼矩阵适应当前传感器信号时,才能正确测量心率。此外,从原始传感器数据中提取的偏移量与原始传感器信号之间的平均误差减小表明,连续适应卡尔曼滤波器可提高从原始传感器数据中分离所需信号的能力。卡尔曼滤波器所需的平均总计算时间不到总信号长度的 25%,这使得在实时环境中进行滤波成为可能。

结论

使用自适应卡尔曼滤波方法可以实时测量心率和呼吸率。自适应卡尔曼滤波器矩阵可改善估计结果,并在测量心肺信号时使滤波器具有通用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ee/4029942/8f87e006cee2/1472-6947-14-37-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验