使用心电图和三轴加速度计进行动态呼吸频率检测。

Ambulatory respiratory rate detection using ECG and a triaxial accelerometer.

作者信息

Chan Alexander M, Ferdosi Nima, Narasimhan Ravi

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:4058-61. doi: 10.1109/EMBC.2013.6610436.

Abstract

Continuous monitoring of respiratory rate in ambulatory conditions has widespread applications for screening of respiratory diseases and remote patient monitoring. Unfortunately, minimally obtrusive techniques often suffer from low accuracy. In this paper, we describe an algorithm with low computational complexity for combining multiple respiratory measurements to estimate breathing rate from an unobtrusive chest patch sensor. Respiratory rates derived from the respiratory sinus arrhythmia (RSA) and modulation of the QRS amplitude of electrocardiography (ECG) are combined with a respiratory rate derived from tri-axial accelerometer data. The three respiration rates are combined by a weighted average using weights based on quality metrics for each signal. The algorithm was evaluated on 15 elderly subjects who performed spontaneous and metronome breathing as well as a variety of activities of daily living (ADLs). When compared to a reference device, the mean absolute error was 1.02 breaths per minute (BrPM) during metronome breathing, 1.67 BrPM during spontaneous breathing, and 2.03 BrPM during ADLs.

摘要

在非卧床状态下持续监测呼吸频率在呼吸系统疾病筛查和远程患者监测方面有着广泛的应用。不幸的是,微创技术往往准确性较低。在本文中,我们描述了一种计算复杂度低的算法,该算法用于结合多种呼吸测量方法,通过一个非侵入式胸部贴片传感器来估计呼吸频率。从呼吸性窦性心律不齐(RSA)和心电图(ECG)的QRS波幅调制得出的呼吸频率,与从三轴加速度计数据得出的呼吸频率相结合。这三种呼吸频率通过基于每个信号质量指标的权重进行加权平均来组合。该算法在15名老年受试者身上进行了评估,这些受试者进行了自主呼吸和跟随节拍器呼吸,以及各种日常生活活动(ADL)。与参考设备相比,在跟随节拍器呼吸时平均绝对误差为每分钟1.02次呼吸(BrPM),自主呼吸时为1.67 BrPM,在进行日常生活活动时为2.03 BrPM。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索