Suppr超能文献

在呼吸负荷试验期间,从智能手机内置加速度计获取的呼吸信号。

Respiratory signal derived from the smartphone built-in accelerometer during a Respiratory Load Protocol.

作者信息

Estrada Luis, Torres Abel, Sarlabous Leonardo, Jané Raimon

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:6768-71. doi: 10.1109/EMBC.2015.7319947.

Abstract

The scope of our work focuses on investigating the potential use of the built-in accelerometer of the smartphones for the recording of the respiratory activity and deriving the respiratory rate. Five healthy subjects performed an inspiratory load protocol. The excursion of the right chest was recorded using the built-in triaxial accelerometer of a smartphone along the x, y and z axes and with an external uniaxial accelerometer. Simultaneously, the respiratory airflow and the inspiratory mouth pressure were recorded, as reference respiratory signals. The chest acceleration signal recorded in the z axis with the smartphone was denoised using a scheme based on the ensemble empirical mode decomposition, a noise data assisted method which decomposes nonstationary and nonlinear signals into intrinsic mode functions. To distinguish noisy oscillatory modes from the relevant modes we use the detrended fluctuation analysis. We reported a very strong correlation between the acceleration of the z axis of the smartphone and the reference accelerometer across the inspiratory load protocol (from 0.80 to 0.97). Furthermore, the evaluation of the respiratory rate showed a very strong correlation (0.98). A good agreement was observed between the respiratory rate estimated with the chest acceleration signal from the z axis of the smartphone and with the respiratory airflow signal: Bland-Altman limits of agreement between -1.44 and 1.46 breaths per minute with a mean bias of -0.01 breaths per minute. This preliminary study provides a valuable insight into the use of the smartphone and its built-in accelerometer for respiratory monitoring.

摘要

我们的工作范围集中于研究智能手机内置加速度计在记录呼吸活动及推导呼吸频率方面的潜在用途。五名健康受试者执行了吸气负荷方案。使用智能手机的内置三轴加速度计沿x、y和z轴以及一个外部单轴加速度计记录右胸的偏移。同时,记录呼吸气流和吸气口压力,作为参考呼吸信号。使用基于总体经验模态分解的方案对智能手机在z轴上记录的胸部加速度信号进行去噪,总体经验模态分解是一种噪声数据辅助方法,可将非平稳和非线性信号分解为固有模态函数。为了从相关模态中区分出噪声振荡模态,我们使用去趋势波动分析。我们报告称,在整个吸气负荷方案中,智能手机z轴加速度与参考加速度计之间存在非常强的相关性(从0.80至0.97)。此外,对呼吸频率的评估显示出非常强的相关性(0.98)。在根据智能手机z轴的胸部加速度信号估算的呼吸频率与呼吸气流信号之间观察到良好的一致性:布兰德-奥特曼一致性界限在每分钟-1.44至1.46次呼吸之间,平均偏差为每分钟-0.01次呼吸。这项初步研究为使用智能手机及其内置加速度计进行呼吸监测提供了有价值的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验