Suppr超能文献

基于改进离散傅里叶变换的表面肌电信号分类频谱特征

Improved discrete Fourier transform based spectral feature for surface electromyogram signal classification.

作者信息

He Jiayuan, Zhang Dingguo, Sheng Xinjun, Meng Jianjun, Zhu Xiangyang

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:6897-900. doi: 10.1109/EMBC.2013.6611143.

Abstract

An improved discrete Fourier transform (iDFT) is presented in this study as a novel feature for surface electromyogram (sEMG) pattern classification. It employs the principle that the spectrum of sEMG signals changes regarding different motions. iDFT feature focuses on global information of local bands to increase the inter-class distance. The experiment results showed that iDFT feature had a better separability than two other spectral features, auto regression (AR) and Power spectral density (PSD), both on experienced and inexperienced subjects. The optimal bandwidth is between 30 and 50 Hz and influence of division methods is not significant. With the low computation cost and property of insensitivity to sampling frequency, our proposed method provides a competitive choice for prosthetic control.

摘要

本研究提出了一种改进的离散傅里叶变换(iDFT),作为表面肌电图(sEMG)模式分类的一种新特征。它采用了表面肌电信号频谱随不同运动而变化的原理。iDFT特征聚焦于局部频段的全局信息,以增加类间距离。实验结果表明,无论是在有经验的受试者还是无经验的受试者中,iDFT特征都比另外两种频谱特征——自回归(AR)和功率谱密度(PSD)——具有更好的可分离性。最佳带宽在30至50赫兹之间,划分方法的影响不显著。由于计算成本低且对采样频率不敏感,我们提出的方法为假肢控制提供了一个有竞争力的选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验