Suppr超能文献

基于 ICA 的肌肉-肌腱单元在动态运动任务中的定位和激活分析。

ICA-based muscle-tendon units localization and activation analysis during dynamic motion tasks.

机构信息

Department of Electronic Science and Technology, University of Science and Technology of China (USTC), Hefei, China.

出版信息

Med Biol Eng Comput. 2018 Mar;56(3):341-353. doi: 10.1007/s11517-017-1677-z. Epub 2017 Jul 18.

Abstract

This study proposed an independent component analysis (ICA)-based framework for localization and activation level analysis of muscle-tendon units (MTUs) within skeletal muscles during dynamic motion. The gastrocnemius muscle and extensor digitorum communis were selected as target muscles. High-density electrode arrays were used to record surface electromyographic (sEMG) data of the targeted muscles during dynamic motion tasks. First, the ICA algorithm was used to decompose multi-channel sEMG data into a weight coefficient matrix and a source matrix. Then, the source signal matrix was analyzed to determine EMG sources and noise sources. The weight coefficient vectors corresponding to the EMG sources were mapped to target muscles to find the location of the MTUs. Meanwhile, the activation level changes in MTUs during dynamic motion tasks were analyzed based on the corresponding EMG source signals. Eight subjects were recruited for this study, and the experimental results verified the feasibility and practicality of the proposed ICA-based method for the MTUs' localization and activation level analysis during dynamic motion. This study provided a new, in-depth way to analyze the functional state of MTUs during dynamic tasks and laid a solid foundation for MTU-based accurate muscle force estimation, muscle fatigue prediction, neuromuscular control characteristic analysis, etc.

摘要

本研究提出了一种基于独立成分分析(ICA)的框架,用于在动态运动过程中对骨骼肌肉内的肌肌腱单元(MTU)进行定位和激活水平分析。选择比目鱼肌和伸趾总肌作为目标肌肉。高密度电极阵列用于记录目标肌肉在动态运动任务中的表面肌电图(sEMG)数据。首先,ICA 算法用于将多通道 sEMG 数据分解为权重系数矩阵和源矩阵。然后,分析源信号矩阵以确定 EMG 源和噪声源。将对应于 EMG 源的权系数向量映射到目标肌肉上,以找到 MTU 的位置。同时,基于相应的 EMG 源信号分析 MTU 在动态运动任务中的激活水平变化。本研究招募了 8 名受试者,实验结果验证了所提出的基于 ICA 的方法在动态运动中 MTU 定位和激活水平分析的可行性和实用性。本研究为在动态任务中分析 MTU 的功能状态提供了一种新的、深入的方法,为基于 MTU 的精确肌肉力估计、肌肉疲劳预测、神经肌肉控制特性分析等奠定了坚实的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验