Suppr超能文献

电子通道衬度成像研究压痕诱导的多晶镍的塑性变形。

Electron channeling contrast imaging of plastic deformation induced by indentation in polycrystalline nickel.

机构信息

McGill University, Department of Mining and Materials Engineering, Montréal, Québec H3A 0C5, Canada.

出版信息

Microsc Microanal. 2013 Dec;19(6):1620-31. doi: 10.1017/S1431927613013469. Epub 2013 Oct 11.

Abstract

Vickers microindentation and Berkovich nanoindentation tests were carried out on a polycrystalline nickel (Ni) bulk specimen. Electron channeling contrast imaging (ECCI) in conjunction with electron backscattered diffraction was used to image and characterize plastic deformation inside and around the indents using a field emission scanning electron microscope. The ECCI was performed with a 5 keV beam energy and 0° tilt specimen position. The strain field distribution, slip lines, and Taylor lattices were imaged on an indented surface. Orientation mapping was used to investigate the local crystallographic misorientation and identify specific ⟨110⟩ slip systems. An ion milling surface preparation technique was used to remove materials from the surface which permitted the study of deformed microstructure below the indent. A dislocation density of 1011 cm-2 was calculated based on the curvature of bend contours observed in the ECCI micrographs obtained from the Vickers indents. A yield strength of 500 MPa was calculated based on the size of the strain field measured from the ECCI micrographs of the nanoindents. The combination of ion milling, ECCI, and electron backscattered diffraction was shown to be beneficial to investigate the indentation-induced plastic deformation in a polycrystalline Ni bulk specimen.

摘要

对多晶镍(Ni)块状样品进行了维氏微压痕和柏氏纳米压痕试验。电子通道衬度成像(ECCI)与背散射电子衍射相结合,使用场发射扫描电子显微镜对压痕内部和周围的塑性变形进行成像和特征描述。ECCI 的束能为 5keV,试样倾斜度为 0°。在压痕表面上成像应变场分布、滑移线和泰勒晶格。取向映射用于研究局部晶体取向错配,并识别特定的 ⟨110⟩滑移系统。离子铣削表面制备技术用于从表面去除材料,从而可以研究压痕下方的变形微观结构。根据从维氏压痕获得的 ECCI 显微照片中观察到的弯曲轮廓的曲率,计算出位错密度为 1011cm-2。根据从纳米压痕的 ECCI 显微照片测量的应变场大小,计算出屈服强度为 500MPa。离子铣削、ECCI 和背散射电子衍射的组合被证明有利于研究多晶 Ni 块状样品中的压痕诱导塑性变形。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验