Suppr超能文献

颅面发育和畸形的本体论及其在颅面畸形转化研究中的应用。

The ontology of craniofacial development and malformation for translational craniofacial research.

出版信息

Am J Med Genet C Semin Med Genet. 2013 Nov;163C(4):232-45. doi: 10.1002/ajmg.c.31377. Epub 2013 Oct 4.

Abstract

We introduce the Ontology of Craniofacial Development and Malformation (OCDM) as a mechanism for representing knowledge about craniofacial development and malformation, and for using that knowledge to facilitate integrating craniofacial data obtained via multiple techniques from multiple labs and at multiple levels of granularity. The OCDM is a project of the NIDCR-sponsored FaceBase Consortium, whose goal is to promote and enable research into the genetic and epigenetic causes of specific craniofacial abnormalities through the provision of publicly accessible, integrated craniofacial data. However, the OCDM should be usable for integrating any web-accessible craniofacial data, not just those data available through FaceBase. The OCDM is based on the Foundational Model of Anatomy (FMA), our comprehensive ontology of canonical human adult anatomy, and includes modules to represent adult and developmental craniofacial anatomy in both human and mouse, mappings between homologous structures in human and mouse, and associated malformations. We describe these modules, as well as prototype uses of the OCDM for integrating craniofacial data. By using the terms from the OCDM to annotate data, and by combining queries over the ontology with those over annotated data, it becomes possible to create "intelligent" queries that can, for example, find gene expression data obtained from mouse structures that are precursors to homologous human structures involved in malformations such as cleft lip. We suggest that the OCDM can be useful not only for integrating craniofacial data, but also for expressing new knowledge gained from analyzing the integrated data.

摘要

我们引入颅面发育和畸形本体 (OCDM),作为一种表示颅面发育和畸形知识的机制,并利用该知识来促进整合通过多种技术、来自多个实验室和多个粒度级别获得的颅面数据。OCDM 是由 NIDCR 赞助的 FaceBase 联盟的一个项目,其目标是通过提供可公开访问的、集成的颅面数据,促进和支持对特定颅面异常的遗传和表观遗传原因的研究。然而,OCDM 应该可用于整合任何可通过网络访问的颅面数据,而不仅仅是那些可通过 FaceBase 获得的数据。OCDM 基于解剖学基础模型 (FMA),这是我们对标准人类成年解剖结构的全面本体,包括用于表示人类和小鼠的成人和发育颅面解剖结构的模块、人类和小鼠同源结构之间的映射,以及相关的畸形。我们描述了这些模块,以及使用 OCDM 整合颅面数据的原型应用。通过使用 OCDM 的术语来注释数据,并将本体查询与注释数据查询结合起来,就可以创建“智能”查询,例如,可以找到从与畸形(如唇裂)相关的同源人类结构的前体的小鼠结构获得的基因表达数据。我们认为,OCDM 不仅可用于整合颅面数据,还可用于表达从分析集成数据中获得的新知识。

相似文献

5
From frames to OWL2: Converting the Foundational Model of Anatomy.从框架到OWL2:转换解剖学基础模型
Artif Intell Med. 2016 May;69:12-21. doi: 10.1016/j.artmed.2016.04.003. Epub 2016 Apr 27.
8
Perspectives and challenges in advancing research into craniofacial anomalies.颅面畸形研究进展的观点和挑战。
Am J Med Genet C Semin Med Genet. 2013 Nov;163C(4):213-7. doi: 10.1002/ajmg.c.31383. Epub 2013 Oct 18.
10
FaceBase: A Community-Driven Hub for Data-Intensive Research.FaceBase:一个面向数据密集型研究的社区驱动型中心。
J Dent Res. 2022 Oct;101(11):1289-1298. doi: 10.1177/00220345221107905. Epub 2022 Jul 31.

引用本文的文献

1
FaceBase: A Community-Driven Hub for Data-Intensive Research.FaceBase:一个面向数据密集型研究的社区驱动型中心。
J Dent Res. 2022 Oct;101(11):1289-1298. doi: 10.1177/00220345221107905. Epub 2022 Jul 31.
10
From frames to OWL2: Converting the Foundational Model of Anatomy.从框架到OWL2:转换解剖学基础模型
Artif Intell Med. 2016 May;69:12-21. doi: 10.1016/j.artmed.2016.04.003. Epub 2016 Apr 27.

本文引用的文献

2
Chapter 9: Analyses using disease ontologies.第 9 章:使用疾病本体论进行分析。
PLoS Comput Biol. 2012;8(12):e1002827. doi: 10.1371/journal.pcbi.1002827. Epub 2012 Dec 27.
3
A unified anatomy ontology of the vertebrate skeletal system.一个统一的脊椎动物骨骼系统解剖学本体。
PLoS One. 2012;7(12):e51070. doi: 10.1371/journal.pone.0051070. Epub 2012 Dec 10.
8
eMouseAtlas, EMAGE, and the spatial dimension of the transcriptome.eMouseAtlas、EMAGE 和转录组的空间维度。
Mamm Genome. 2012 Oct;23(9-10):514-24. doi: 10.1007/s00335-012-9407-1. Epub 2012 Jul 31.
9
Bayesian ontology querying for accurate and noise-tolerant semantic searches.贝叶斯本体查询用于准确和抗噪的语义搜索。
Bioinformatics. 2012 Oct 1;28(19):2502-8. doi: 10.1093/bioinformatics/bts471. Epub 2012 Jul 26.
10
A query integrator and manager for the query web.查询网络的查询集成器和管理器。
J Biomed Inform. 2012 Oct;45(5):975-91. doi: 10.1016/j.jbi.2012.03.008. Epub 2012 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验