文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用双层和三层金纳米粒子增强对 3D 细胞培养物的渗透。

Enhanced penetration into 3D cell culture using two and three layered gold nanoparticles.

机构信息

Department of Pharmacology and Toxicology, University of Louisville, KY, USA.

出版信息

Int J Nanomedicine. 2013;8:3603-17. doi: 10.2147/IJN.S51668. Epub 2013 Oct 1.


DOI:10.2147/IJN.S51668
PMID:24124360
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3794839/
Abstract

Nano-scale particles sized 10-400 nm administered systemically preferentially extravasate from tumor vasculature due to the enhanced permeability and retention effect. Therapeutic success remains elusive, however, because of inhomogeneous particle distribution within tumor tissue. Insufficient tumor vascularization limits particle transport and also results in avascular hypoxic regions with non-proliferating cells, which can regenerate tissue after nanoparticle-delivered cytotoxicity or thermal ablation. Nanoparticle surface modifications provide for increasing tumor targeting and uptake while decreasing immunogenicity and toxicity. Herein, we created novel two layer gold-nanoshell particles coated with alkanethiol and phosphatidylcholine, and three layer nanoshells additionally coated with high-density-lipoprotein. We hypothesize that these particles have enhanced penetration into 3-dimensional cell cultures modeling avascular tissue when compared to standard poly(ethylene glycol) (PEG)-coated nanoshells. Particle uptake and distribution in liver, lung, and pancreatic tumor cell cultures were evaluated using silver-enhancement staining and hyperspectral imaging with dark field microscopy. Two layer nanoshells exhibited significantly higher uptake compared to PEGylated nanoshells. This multilayer formulation may help overcome transport barriers presented by tumor vasculature, and could be further investigated in vivo as a platform for targeted cancer therapies.

摘要

纳米级颗粒大小为 10-400nm,全身给药时由于增强的通透性和保留效应,优先从肿瘤血管中外渗。然而,由于肿瘤组织内颗粒分布不均匀,治疗效果仍然难以捉摸。肿瘤血管生成不足限制了颗粒的转运,也导致了乏血管缺氧区域,其中无增殖细胞在纳米颗粒输送的细胞毒性或热消融后可以再生组织。纳米颗粒表面修饰提供了增加肿瘤靶向和摄取的能力,同时降低了免疫原性和毒性。在此,我们创建了新型双层金纳米壳颗粒,用巯基烷和磷脂酰胆碱进行涂层,并在三层纳米壳上额外用高密度脂蛋白进行涂层。我们假设与标准聚乙二醇(PEG)涂层纳米壳相比,这些颗粒在穿透模拟无血管组织的 3D 细胞培养物方面具有增强的穿透能力。使用银增强染色和暗场显微镜的高光谱成像评估了在肝、肺和胰腺肿瘤细胞培养物中的颗粒摄取和分布。与 PEG 化纳米壳相比,双层纳米壳表现出明显更高的摄取。这种多层配方可能有助于克服肿瘤血管呈现的转运障碍,并可作为靶向癌症治疗的平台在体内进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a1f/3794839/5939a3ec221d/ijn-8-3603Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a1f/3794839/1e41cea22a7c/ijn-8-3603Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a1f/3794839/36d83ffbd53e/ijn-8-3603Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a1f/3794839/257493f69f6e/ijn-8-3603Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a1f/3794839/e0348950825d/ijn-8-3603Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a1f/3794839/91dfb129e0a4/ijn-8-3603Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a1f/3794839/5939a3ec221d/ijn-8-3603Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a1f/3794839/1e41cea22a7c/ijn-8-3603Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a1f/3794839/36d83ffbd53e/ijn-8-3603Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a1f/3794839/257493f69f6e/ijn-8-3603Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a1f/3794839/e0348950825d/ijn-8-3603Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a1f/3794839/91dfb129e0a4/ijn-8-3603Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a1f/3794839/5939a3ec221d/ijn-8-3603Fig6.jpg

相似文献

[1]
Enhanced penetration into 3D cell culture using two and three layered gold nanoparticles.

Int J Nanomedicine. 2013-10-1

[2]
Detection of Phosphatidylcholine-Coated Gold Nanoparticles in Orthotopic Pancreatic Adenocarcinoma using Hyperspectral Imaging.

PLoS One. 2015-6-5

[3]
Evaluation of Drug-Loaded Gold Nanoparticle Cytotoxicity as a Function of Tumor Vasculature-Induced Tissue Heterogeneity.

Ann Biomed Eng. 2018-10-8

[4]
An interdisciplinary computational/experimental approach to evaluate drug-loaded gold nanoparticle tumor cytotoxicity.

Nanomedicine (Lond). 2016-2

[5]
Fluorescence-tagged gold nanoparticles for rapidly characterizing the size-dependent biodistribution in tumor models.

Adv Healthc Mater. 2012-8-20

[6]
Rapid Raman imaging of stable, functionalized nanoshells in mammalian cell cultures.

Nano Lett. 2009-8

[7]
Evaluation of uptake and distribution of gold nanoparticles in solid tumors.

Eur Phys J Plus. 2015-11-1

[8]
Critical parameters in the pegylation of gold nanoshells for biomedical applications: an in vitro macrophage study.

J Drug Target. 2009-4

[9]
In situ growth of hollow gold-silver nanoshells within porous silica offers tunable plasmonic extinctions and enhanced colloidal stability.

ACS Appl Mater Interfaces. 2014-11-11

[10]
Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior.

ACS Nano. 2013-6-27

引用本文的文献

[1]
Harvestable tumour spheroids initiated in a gelatin-carboxymethyl cellulose hydrogel for cancer targeting and imaging with fluorescent gold nanoclusters.

In Vitro Model. 2022-10-21

[2]
Impact of Intratracheal Administration of Polyethylene Glycol-Coated Silver Nanoparticles on the Heart of Normotensive and Hypertensive Mice.

Int J Mol Sci. 2023-5-17

[3]
Nanotechnology in diagnosis and therapy of gastrointestinal cancer.

World J Clin Cases. 2022-6-6

[4]
Kinetics of Nanomedicine in Tumor Spheroid as an Model System for Efficient Tumor-Targeted Drug Delivery With Insights From Mathematical Models.

Front Bioeng Biotechnol. 2021-12-1

[5]
Imaging techniques in nanomedical research.

Eur J Histochem. 2020-7-1

[6]
Hepato(Geno)Toxicity Assessment of Nanoparticles in a HepG2 Liver Spheroid Model.

Nanomaterials (Basel). 2020-3-18

[7]
The Toxicity Of Metallic Nanoparticles On Liver: The Subcellular Damages, Mechanisms, And Outcomes.

Int J Nanomedicine. 2019-11-7

[8]
Nanotheranostics Targeting the Tumor Microenvironment.

Front Bioeng Biotechnol. 2019-8-14

[9]
Efficacy of Surface-Modified PLGA Nanoparticles as a Function of Cervical Cancer Type.

Pharm Res. 2019-3-13

[10]
Tumor Cell-Derived Extracellular Vesicle-Coated Nanocarriers: An Efficient Theranostic Platform for the Cancer-Specific Delivery of Anti-miR-21 and Imaging Agents.

ACS Nano. 2018-10-22

本文引用的文献

[1]
Modeling of nanotherapeutics delivery based on tumor perfusion.

New J Phys. 2013-5-8

[2]
A computational model for predicting nanoparticle accumulation in tumor vasculature.

PLoS One. 2013-2-28

[3]
Size- and pathotropism-driven targeting and washout-resistant effects of boronic acid-rich protein nanoparticles for liver cancer regression.

J Control Release. 2013-2-28

[4]
The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems.

J Theor Biol. 2012-12-7

[5]
Hypoxia-induced angiogenesis: good and evil.

Genes Cancer. 2011-12

[6]
Best practices in cancer nanotechnology: perspective from NCI nanotechnology alliance.

Clin Cancer Res. 2012-6-5

[7]
Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo.

ACS Nano. 2012-5-4

[8]
Integrated intravital microscopy and mathematical modeling to optimize nanotherapeutics delivery to tumors.

AIP Adv. 2012-3

[9]
Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation.

BMC Biol. 2012-3-22

[10]
N-trimethyl chitosan nanoparticle-encapsulated lactosyl-norcantharidin for liver cancer therapy with high targeting efficacy.

Nanomedicine. 2012-2-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索