Suppr超能文献

在一个单一遗传流行病学数据集中对49个数量性状进行全基因组关联研究的基因集分析。

Gene set analyses of genome-wide association studies on 49 quantitative traits measured in a single genetic epidemiology dataset.

作者信息

Kim Jihye, Kwon Ji-Sun, Kim Sangsoo

机构信息

Department of Bioinformatics and Life Science, Soongsil University, Seoul 156-743, Korea.

出版信息

Genomics Inform. 2013 Sep;11(3):135-41. doi: 10.5808/GI.2013.11.3.135. Epub 2013 Sep 30.

Abstract

Gene set analysis is a powerful tool for interpreting a genome-wide association study result and is gaining popularity these days. Comparison of the gene sets obtained for a variety of traits measured from a single genetic epidemiology dataset may give insights into the biological mechanisms underlying these traits. Based on the previously published single nucleotide polymorphism (SNP) genotype data on 8,842 individuals enrolled in the Korea Association Resource project, we performed a series of systematic genome-wide association analyses for 49 quantitative traits of basic epidemiological, anthropometric, or blood chemistry parameters. Each analysis result was subjected to subsequent gene set analyses based on Gene Ontology (GO) terms using gene set analysis software, GSA-SNP, identifying a set of GO terms significantly associated to each trait (pcorr < 0.05). Pairwise comparison of the traits in terms of the semantic similarity in their GO sets revealed surprising cases where phenotypically uncorrelated traits showed high similarity in terms of biological pathways. For example, the pH level was related to 7 other traits that showed low phenotypic correlations with it. A literature survey implies that these traits may be regulated partly by common pathways that involve neuronal or nerve systems.

摘要

基因集分析是解释全基因组关联研究结果的有力工具,目前越来越受欢迎。比较从单个遗传流行病学数据集中测量的各种性状所获得的基因集,可能有助于深入了解这些性状背后的生物学机制。基于先前发表的参与韩国协会资源项目的8842名个体的单核苷酸多态性(SNP)基因型数据,我们对49个基本流行病学、人体测量学或血液化学参数的定量性状进行了一系列系统的全基因组关联分析。使用基因集分析软件GSA-SNP,基于基因本体论(GO)术语对每个分析结果进行后续基因集分析,确定与每个性状显著相关的一组GO术语(pcorr < 0.05)。根据其GO集中的语义相似性对性状进行成对比较,发现了一些令人惊讶的情况,即表型不相关的性状在生物学途径方面表现出高度相似性。例如,pH值水平与其他7个性状相关,而这些性状与它的表型相关性较低。文献调查表明,这些性状可能部分受涉及神经元或神经系统的共同途径调控。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e89/3794086/e54f333a1c5c/gni-11-135-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验