Authors' Affiliations: Departments of Biomedical Engineering, Cancer Biology, Medicine, Vanderbilt University Institute of Imaging Science, and Breast Cancer Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University Nashville, Tennessee.
Cancer Res. 2013 Oct 15;73(20):6164-74. doi: 10.1158/0008-5472.CAN-13-0527.
Abnormal cellular metabolism is a hallmark of cancer, yet there is an absence of quantitative methods to dynamically image this powerful cellular function. Optical metabolic imaging (OMI) is a noninvasive, high-resolution, quantitative tool for monitoring cellular metabolism. OMI probes the fluorescence intensities and lifetimes of the autofluorescent metabolic coenzymes reduced NADH and flavin adenine dinucleotide. We confirm that OMI correlates with cellular glycolytic levels across a panel of human breast cell lines using standard assays of cellular rates of glucose uptake and lactate secretion (P < 0.05, r = 0.89). In addition, OMI resolves differences in the basal metabolic activity of untransformed from malignant breast cells (P < 0.05) and between breast cancer subtypes (P < 0.05), defined by estrogen receptor and/or HER2 expression or absence. In vivo OMI is sensitive to metabolic changes induced by inhibition of HER2 with the antibody trastuzumab (herceptin) in HER2-overexpressing human breast cancer xenografts in mice. This response was confirmed with tumor growth curves and stains for Ki67 and cleaved caspase-3. OMI resolved trastuzumab-induced changes in cellular metabolism in vivo as early as 48 hours posttreatment (P < 0.05), whereas fluorodeoxyglucose-positron emission tomography did not resolve any changes with trastuzumab up to 12 days posttreatment (P > 0.05). In addition, OMI resolved cellular subpopulations of differing response in vivo that are critical for investigating drug resistance mechanisms. Importantly, OMI endpoints remained unchanged with trastuzumab treatment in trastuzumab-resistant xenografts (P > 0.05). OMI has significant implications for rapid cellular-level assessment of metabolic response to molecular expression and drug action, which would greatly accelerate drug development studies.
细胞代谢异常是癌症的一个标志,但目前缺乏定量方法来动态成像这种强大的细胞功能。光学代谢成像是一种非侵入性、高分辨率、定量的工具,可用于监测细胞代谢。OMI 探测自荧光代谢辅酶还原型烟酰胺腺嘌呤二核苷酸(NADH)和黄素腺嘌呤二核苷酸(FAD)的荧光强度和寿命。我们使用细胞葡萄糖摄取和乳酸分泌的标准测定法,证实 OMI 与一系列人乳腺癌细胞系的细胞糖酵解水平相关(P<0.05,r=0.89)。此外,OMI 还可分辨未转化的正常乳腺细胞和恶性乳腺细胞之间(P<0.05)以及乳腺癌亚型之间(P<0.05)的基础代谢活性差异,这些差异由雌激素受体和/或 HER2 表达或缺失定义。在体内,用针对 HER2 的抗体曲妥珠单抗(赫赛汀)抑制 HER2 后,OMI 对肿瘤内代谢变化敏感,该抗体抑制了在荷人乳腺癌异种移植瘤的小鼠中 HER2 过表达。通过肿瘤生长曲线和 Ki67 和 cleaved caspase-3 染色证实了这一反应。在治疗后 48 小时(P<0.05),OMI 即可分辨出曲妥珠单抗诱导的细胞代谢变化,而氟脱氧葡萄糖正电子发射断层扫描(18F-FDG-PET)在治疗后 12 天内无法分辨出任何变化(P>0.05)。此外,OMI 还可以分辨出在体内具有不同反应的细胞亚群,这对于研究药物耐药机制至关重要。重要的是,在曲妥珠单抗耐药的异种移植瘤中,OMI 终点在曲妥珠单抗治疗后保持不变(P>0.05)。OMI 对快速进行细胞水平的代谢反应评估具有重要意义,这种评估可用于分子表达和药物作用,将极大地加速药物开发研究。