Suppr超能文献

干扰素调节因子-1 在鞭毛蛋白诱导的重编程中的作用:CXCL10 在角膜先天防御铜绿假单胞菌感染中的潜在保护作用。

Interferon regulatory factor-1 in flagellin-induced reprogramming: potential protective role of CXCL10 in cornea innate defense against Pseudomonas aeruginosa infection.

机构信息

Department of Anatomy and Cell Biology, Kresge Eye Institute, Wayne State University, Detroit, Michigan.

出版信息

Invest Ophthalmol Vis Sci. 2013 Nov 15;54(12):7510-21. doi: 10.1167/iovs.13-12453.

Abstract

PURPOSE

We previously showed that pre-exposure of the cornea to Toll-like receptor (TLR)5 ligand flagellin induces strong protective innate defense against microbial pathogens and hypothesized that flagellin modulates gene expression at the transcriptional levels. Thus, we sought to determine the role of one transcription factor, interferon regulatory factor (IRF1), and its target gene CXCL10 therein.

METHODS

Superarray was used to identify transcription factors differentially expressed in Pseudomonas aeruginosa-challenged human corneal epithelial cells (CECs) with or without flagellin pretreatment. The expression of CXCL10, IRF1, LI-8(CXCL2), and IFNγ was determined by PCR, immunohistochemistry, Western/dot blotting, and/or ELISA. IRF1 knockout mice, CXCL10 and IFNγ neutralization, and NK cell depletion were used to define in vivo regulation and function of CXCL10. The severity of P. aeruginosa was assessed using clinical scoring, slit-lamp microscopy, bacterial counting, polymorphonuclear leukocytes (PMN) infiltration, and macrophage inflammatory protein 2/Chemokine (C-X-C motif) ligand 2 (MIP-2/CXCL2) expression.

RESULTS

Flagellin pretreatment drastically affected P. aeruginosa-induced IRF1 expression in human CECs. However, flagellin pretreatment augmented the P. aeruginosa-induced expression of Irf1 and its target gene Cxcl10 in B6 mouse corneas. Irf1 deficiency reduced infection-triggered CXCL10 expression, increased keratitis severity, and attenuated flagellin-elicited protection compared to values in wild-type (WT) controls. CXCL10 neutralization in the cornea of WT mice displayed pathogenesis similar to that of IRF1⁻/⁻ mice. IFNγ receptor neutralization and NK cell depletion prevented flagellin-augmented IRF1 and CXCL10 expression and increased the susceptibility to P. aeruginosa infection in mouse corneas.

CONCLUSIONS

IRF1 plays a role in the corneal innate immune response by regulating CXCL10 expression. IFNγ-producing NK cells augment the epithelial expression of IRF1 and CXCL10 and thus contribute to the innate defense of the cornea against P. aeruginosa infection.

摘要

目的

我们之前曾表明,预先暴露于 Toll 样受体(TLR)5 配体鞭毛蛋白可诱导针对微生物病原体的强大保护性先天防御,并假设鞭毛蛋白可在转录水平上调节基因表达。因此,我们试图确定转录因子干扰素调节因子(IRF1)及其靶基因 CXCL10 的作用。

方法

使用超级阵列确定了在有或没有鞭毛蛋白预处理的情况下,铜绿假单胞菌(PA)挑战的人角膜上皮细胞(CEC)中差异表达的转录因子。通过 PCR、免疫组织化学、Western/dot 印迹和/或 ELISA 测定 CXCL10、IRF1、LI-8(CXCL2)和 IFNγ的表达。使用 IRF1 敲除小鼠、CXCL10 和 IFNγ 中和以及 NK 细胞耗竭来定义 CXCL10 的体内调节和功能。使用临床评分、裂隙灯显微镜检查、细菌计数、多形核白细胞(PMN)浸润和巨噬细胞炎症蛋白 2/趋化因子(C-X-C 基序)配体 2(MIP-2/CXCL2)表达来评估 PA 的严重程度。

结果

鞭毛蛋白预处理可显著影响人 CEC 中 PA 诱导的 IRF1 表达。然而,鞭毛蛋白预处理增强了 B6 小鼠角膜中 PA 诱导的 Irf1 和其靶基因 Cxcl10 的表达。与 WT 对照相比,IRF1 缺陷减少了感染触发的 CXCL10 表达,增加了角膜炎的严重程度,并减弱了鞭毛蛋白引发的保护作用。在 WT 小鼠的角膜中中和 CXCL10 显示出与 IRF1⁻/⁻小鼠相似的发病机制。IFNγ 受体中和和 NK 细胞耗竭可防止鞭毛蛋白增强的 IRF1 和 CXCL10 表达,并增加了小鼠角膜对 PA 感染的易感性。

结论

IRF1 通过调节 CXCL10 表达在角膜先天免疫反应中发挥作用。产生 IFNγ 的 NK 细胞增强上皮细胞中 IRF1 和 CXCL10 的表达,从而有助于角膜对 PA 感染的先天防御。

相似文献

2
3
Inactivation of the miR-183/96/182 Cluster Decreases the Severity of Pseudomonas aeruginosa-Induced Keratitis.
Invest Ophthalmol Vis Sci. 2016 Apr;57(4):1506-17. doi: 10.1167/iovs.16-19134.
4
Protective efficacy of a peptide derived from a potential adhesin of Pseudomonas aeruginosa against corneal infection.
Exp Eye Res. 2016 Feb;143:39-48. doi: 10.1016/j.exer.2015.10.011. Epub 2015 Oct 20.
5
Topical flagellin protects the injured corneas from Pseudomonas aeruginosa infection.
Microbes Infect. 2010 Nov;12(12-13):978-89. doi: 10.1016/j.micinf.2010.06.007. Epub 2010 Jul 1.
6
ISG15 in Host Defense Against Candida albicans Infection in a Mouse Model of Fungal Keratitis.
Invest Ophthalmol Vis Sci. 2017 Jun 1;58(7):2948-2958. doi: 10.1167/iovs.17-21476.
7
ST2 is essential for Th2 responsiveness and resistance to pseudomonas aeruginosa keratitis.
Invest Ophthalmol Vis Sci. 2007 Oct;48(10):4626-33. doi: 10.1167/iovs.07-0316.
8
IL-33 shifts macrophage polarization, promoting resistance against Pseudomonas aeruginosa keratitis.
Invest Ophthalmol Vis Sci. 2010 Mar;51(3):1524-32. doi: 10.1167/iovs.09-3983. Epub 2009 Nov 5.
9
Matrix metalloproteinase-9 amplifies the immune response to Pseudomonas aeruginosa corneal infection.
Invest Ophthalmol Vis Sci. 2006 Jan;47(1):256-64. doi: 10.1167/iovs.05-1050.
10
Topical flagellin-mediated innate defense against Candida albicans keratitis.
Invest Ophthalmol Vis Sci. 2011 May 10;52(6):3074-82. doi: 10.1167/iovs.10-5928.

引用本文的文献

3
The multiple roles of interferon regulatory factor family in health and disease.
Signal Transduct Target Ther. 2024 Oct 9;9(1):282. doi: 10.1038/s41392-024-01980-4.
4
The Host-Pathogen Interplay: A Tale of Two Stories within the Cornea and Posterior Segment.
Microorganisms. 2023 Aug 12;11(8):2074. doi: 10.3390/microorganisms11082074.
5
Differentially Expressed Genes of Isolates from Eyes with Keratitis and Healthy Conjunctival Sacs.
Infect Drug Resist. 2022 Aug 12;15:4495-4506. doi: 10.2147/IDR.S374335. eCollection 2022.
6
Genetic disruption of zebrafish mab21l1 reveals a conserved role in eye development and affected pathways.
Dev Dyn. 2021 Aug;250(8):1056-1073. doi: 10.1002/dvdy.312. Epub 2021 Mar 12.
7
8
Exploring the Key Genes and Pathways in the Formation of Corneal Scar Using Bioinformatics Analysis.
Biomed Res Int. 2020 Jan 18;2020:6247489. doi: 10.1155/2020/6247489. eCollection 2020.
9
Identification of novel predictive factors for post surgical corneal haze.
Sci Rep. 2019 Nov 18;9(1):16980. doi: 10.1038/s41598-019-53123-3.
10
The Role of Connexin-43 in the Inflammatory Process: A New Potential Therapy to Influence Keratitis.
J Ophthalmol. 2019 Jan 21;2019:9312827. doi: 10.1155/2019/9312827. eCollection 2019.

本文引用的文献

2
Natural killer (NK) cells in antibacterial innate immunity: angels or devils?
Mol Med. 2012 Mar 30;18(1):270-85. doi: 10.2119/molmed.2011.00201.
3
Dendritic cell-epithelium interplay is a determinant factor for corneal epithelial wound repair.
Am J Pathol. 2011 Nov;179(5):2243-53. doi: 10.1016/j.ajpath.2011.07.050. Epub 2011 Sep 13.
4
MicroRNA in TLR signaling and endotoxin tolerance.
Cell Mol Immunol. 2011 Sep;8(5):388-403. doi: 10.1038/cmi.2011.26. Epub 2011 Aug 8.
5
Toll-like receptors and their crosstalk with other innate receptors in infection and immunity.
Immunity. 2011 May 27;34(5):637-50. doi: 10.1016/j.immuni.2011.05.006.
6
Host defense pathways: role of redundancy and compensation in infectious disease phenotypes.
Immunity. 2011 May 27;34(5):629-36. doi: 10.1016/j.immuni.2011.05.009.
7
Topical flagellin-mediated innate defense against Candida albicans keratitis.
Invest Ophthalmol Vis Sci. 2011 May 10;52(6):3074-82. doi: 10.1167/iovs.10-5928.
8
Innate immunity in the small intestine.
Curr Opin Gastroenterol. 2011 Mar;27(2):125-31. doi: 10.1097/MOG.0b013e3283438dea.
9
Toll-like receptor 5 stimulation protects mice from acute Clostridium difficile colitis.
Infect Immun. 2011 Apr;79(4):1498-503. doi: 10.1128/IAI.01196-10. Epub 2011 Jan 18.
10
Role of defensins in corneal epithelial barrier function against Pseudomonas aeruginosa traversal.
Infect Immun. 2011 Feb;79(2):595-605. doi: 10.1128/IAI.00854-10. Epub 2010 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验