O'Donnell M E, Kornberg A
J Biol Chem. 1985 Oct 15;260(23):12875-83.
Movements of DNA polymerase III holoenzyme (holoenzyme) in replicating a template multiprimed with synthetic pentadecadeoxynucleotides (15-mers) annealed at known positions on a single-stranded circular or linear DNA have been analyzed. After extension of one 15-mer on a multiprimed template, holoenzyme moves downstream in the direction of chain elongation to the next primer. Holoenzyme readily traverses a duplex, even 400 base pairs long, to exploit its 3'-hydroxyl end as the next available primer. This downstream polarity likely results from an inability to diffuse upstream along single-stranded DNA. These holoenzyme movements, unlike formation of the initial complex with a primer, do not require ATP. Time elapsed between completion of a chain and initiation on the next downstream primer is rapid (1 s or less); dissociation of holoenzyme to form a complex with another primed template is slow (1-2 min). Thus, holoenzyme diffuses rapidly only on duplex DNA, probably in both directions, and forms an initiation complex with the first primer encountered. Based on these findings, schemes can be considered for holoenzyme action at the replication fork of a duplex chromosome.
对DNA聚合酶III全酶(全酶)在复制以合成的十五聚脱氧核苷酸(15聚体)在单链环状或线性DNA上已知位置退火而成的多引物模板时的运动进行了分析。在多引物模板上延伸一个15聚体后,全酶沿链延伸方向向下游移动到下一个引物。全酶很容易穿过双链体,即使长达400个碱基对,利用其3'-羟基末端作为下一个可用引物。这种下游极性可能是由于无法沿单链DNA向上游扩散所致。这些全酶运动,与与引物形成初始复合物不同,不需要ATP。完成一条链合成与在下一个下游引物上起始之间经过的时间很快(1秒或更短);全酶解离以与另一个引物模板形成复合物则很慢(1 - 2分钟)。因此,全酶仅在双链DNA上快速扩散,可能是双向的,并与遇到的第一个引物形成起始复合物。基于这些发现,可以考虑全酶在双链染色体复制叉处作用的机制。